Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis.

نویسندگان

  • S V Sutton
  • R E Marquis
چکیده

The proton-translocating, membrane ATPases of oral streptococci have been implicated in cytoplasmic pH regulation, acidurance, and cariogenicity. Membranes were isolated from Streptococcus mutans GS-5 and Streptococcus sanguis NCTC 10904 following salt-induced lysis of cells treated with lysozyme and mutanolysin. The ATPase activities of these membranes were 1.8 and 1.1 units per mg membrane protein, respectively. F1 ATPases were washed free from the membranes and purified by fast protein liquid chromatography (FPLC). Hydrolytic activities of the F1 ATPases were maximal at pH values between 6.0 and 6.6, whereas the membrane-bound enzymes had pH maxima of 7.5 (S. sanguis) and 6.0 (S. mutans). The F1 ATPases of the streptococci were similar to the well-characterized enzyme of Escherichia coli; they consisted of five different polypeptides and had apparent, aggregate molecular weights of from 335 to 350 Kd. The membrane-bound ATPases were characterized biochemically and found to be similar to those of proton-translocating ATPases of E. coli and Streptococcus faecalis. Km values for the membranes with respect to ATP were found to be 0.9 and 1.0 mmol/L for S. mutans and S. sanguis, respectively. Both enzymes had specificities for purine triphosphates and were active with a variety of divalent cations, although optimal activity occurred with ATP and Mg. The membrane-associated enzymes were sensitive to the inhibitors dicyclohexylcarbodiimide (DCCD) and azide, but insensitive to ouabain and vanadate.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904.

Oral streptococci utilize an F-ATPase to regulate cytoplasmic pH. Previous studies have shown that this enzyme is a principal determinant of aciduricity in the oral streptococcal species Streptococcus sanguis and Streptococcus mutans. Differences in the pH optima of the respective ATPases appears to be the main reason that S. mutans is more tolerant of low pH values than S. sanguis and hence pa...

متن کامل

Antimicrobial effects of Tanacetum balsamita L essential oil Streptococcus mutants, Streptococcus sanguis and Streptococcus salivarius and its comparison with common mouthwashes

Background and aim: Tooth decay is one of the most common diseases in the world. The use of herbal substances to prevent and treat this disease has been considered for various reasons, such as increasing the resistance of bacteria to antibiotics, high cost, and adverse effects of some chemicals used in dentistry. This study aimed to investigate the effect of Tanacetum balsamita L essential oil ...

متن کامل

تعیین حداقل غلظت مهاری (MIC) دو نوع عصاره گیاهی بر استرپتوکوک‌های عامل پوسیدگی دندان

Background and Aims: Tooth decay has high prevalence in the world. The use of plant material for the prevention and treatment of this disease for various reasons is considered, due to the increasing resistance of bacteria to antibiotics, the high cost and adverse effects of some chemicals used in dentistry. This study was aimed to determine the antimicrobial effect of alcoholic extract of Pep...

متن کامل

Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.

Differences in acid tolerance among representative oral streptococci were found to be related more closely to the dynamic permeabilities of the bacteria to protons than to differences in the sensitivities of cell membranes to gross damage caused by environmental acidification. For Streptococcus mutans GS-5, Streptococcus sanguis NCTC 10904, and Streptococcus salivarius ATCC 13419, gross membran...

متن کامل

Genetic transformation of Streptococcus mutans.

Three strains of Streptococcus mutans belonging to serotypes a, c, and f were transformed to streptomycin resistance by deoxyribonucleic acids derived from homologous and heterologous streptomycin-resistant strains of S. mutans and Streptococcus sanguis strain Challis. Homologous transformation of S. mutans was less efficient than heterologous transformation by deoxyribonucleic acids from other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of dental research

دوره 66 6  شماره 

صفحات  -

تاریخ انتشار 1987