The Dawn of Statistical ASR and MT
نویسنده
چکیده
I am very grateful for the award you have bestowed on me. To understand your generosity I have to assume that you are honoring the leadership of three innovative groups that I headed in the last 47 years: at Cornell, IBM, and now at Johns Hopkins. You know my co-workers in the last two teams. The Cornell group was in Information Theory and included Toby Berger, Terrence Fine, and Neil J. A. Sloane (earlier my Ph.D. student), all of whom earned their own laurels. I was told that I should give an acceptance speech and was furnished with example texts by previous recipients. They wrote about the development and impact of their ideas. So I will tell you about my beginnings and motivations and then focus on the contributions of my IBM team. In this way the text will have some historical value and may clear up certain widely held misconceptions.
منابع مشابه
The MIT-LL/AFRL MT system
The MIT-LL/AFRL MT system is a statistical phrase-based translation system that implements many modern SMT training and decoding techniques. Our system was designed with the long term goal of dealing with corrupted ASR input for Speech-to-Speech MT applications. This paper will discuss the architecture of the MIT-LL/AFRL MT system, and experiments with manual and ASR transcription data that wer...
متن کاملAutomatic speech recognition framework for multilingual audio contents
Automatic speech recognition (ASR) for multilingual audio contents, such as international conference recordings and broadcast news, is addressed. For handling such contents efficiently, a simultaneous ASR is promising. Conventionally, ASR has been performed independently, namely language by language, although multilingual speech, which consists of utterances in several languages representing th...
متن کاملPseudo-morpheme and Confusion Network Based Korean-english Statistical Spoken Language Translation System
In this demonstration, we present POSSLT (POSTECH Spoken Language Translation) for a Korean-English statistical spoken language translation (SLT) system using pseudo-morpheme and confusion network (CN) based technique. Like most other SLT systems, automatic speech recognition (ASR) and machine translation (MT) are coupled in a cascading manner in our SLT system. We used confusion network based ...
متن کاملInvestigation of MT-based ASR confusion models for semi-supervised discriminative language modeling
Semi-supervised discriminative language modeling uses simulated N-best lists instead of real ASR outputs as its training examples. In this study we apply two techniques in which artificial examples are generated using a WFST and an MT system trained on pairs of reference text and ASR output. We compare the performance of these techniques with the structured prediction and ranking variants of th...
متن کاملIntegration of Speech to Computer-Assisted Translation Using Finite-State Automata
State-of-the-art computer-assisted translation engines are based on a statistical prediction engine, which interactively provides completions to what a human translator types. The integration of human speech into a computer-assisted system is also a challenging area and is the aim of this paper. So far, only a few methods for integrating statistical machine translation (MT) models with automati...
متن کاملThe MIT-LL/AFRL IWSLT-2012 MT system
This paper describes the MIT-LL/AFRL statistical MT system and the improvements that were developed during the IWSLT 2012 evaluation campaign. As part of these efforts, we experimented with a number of extensions to the standard phrase-based model that improve performance on the Arabic to English and English to French TED-talk translation task. We also applied our existing ASR system to the TED...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Linguistics
دوره 35 شماره
صفحات -
تاریخ انتشار 2009