Equiangular subspaces in Euclidean spaces

نویسندگان

  • Igor Balla
  • Benny Sudakov
چکیده

A set of lines through the origin is called equiangular if every pair of lines defines the same angle, and the maximum size of an equiangular set of lines in R was studied extensively for the last 70 years. In this paper, we study analogous questions for k-dimensional subspaces. We discuss natural ways of defining the angle between k-dimensional subspaces and correspondingly study the maximum size of an equiangular set of k-dimensional subspaces in R. Our bounds extend and improve a result of Blokhuis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Equiangular Sets of Lines in Euclidean Space

A construction is given of 29(d + 1) 2 equiangular lines in Euclidean d-space, when d = 3 · 22t−1 − 1 with t any positive integer. This compares with the well known “absolute” upper bound of 12d(d+ 1) lines in any equiangular set; it is the first known constructive lower bound of order d2 . For background and terminology we refer to Seidel [3]. The standard method for obtaining a system of equi...

متن کامل

Quantitative Hahn-Banach Theorems and Isometric Extensions forWavelet and Other Banach Spaces

We introduce and study Clarkson, Dol’nikov-Pichugov, Jacobi and mutual diameter constants reflecting the geometry of a Banach space and Clarkson, Jacobi and Pichugov classes of Banach spaces and their relations with James, self-Jung, Kottman and Schäffer constants in order to establish quantitative versions of Hahn-Banach separability theorem and to characterise the isometric extendability of H...

متن کامل

$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures

Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017