Selective catalytic reduction of NO with NH3 over Mo–Fe/beta catalysts: the effect of Mo loading amounts
نویسندگان
چکیده
A series of Mox–Fe/beta catalysts with constant Fe and variable Mo content were synthesized and investigated for selective catalytic reduction (SCR) of NOx with NH3. It was found that the Mo0.2–Fe/beta catalyst exhibited excellent activity, N2 selectivity and preferable resistance to H2O and SO2. The Mox– Fe/beta catalysts were characterized by various analytical techniques. TEM and SEM images showed that the addition of Mo could enhance the dispersion of iron oxides. The results of NH3-TPD and Py-IR indicated that the introduction of Mo resulted in a change of Brønsted acidity, which was associated with high-temperature SCR activity. XPS and XANES results showed that the introduction of Mo resulted in a change of Fe content, which determined the low-temperature activity. DFT calculations showed the strong effects of Mo on the crystal structure, charge distribution and oxygen vacancy formation energy of iron oxides, which further explained the role of Mo in the catalyst behaviors during the SCR process.
منابع مشابه
Effect of acidity and physical properties of nanozeolite catalyst on hydrocracking of vacuum gas oil
In this study, beta nanozeolite, ultra-stable Y zeolite (USY) and amorphous silica-alumina (ASA) were synthesized. These compounds were used as the support of hydrocracking catalyst. Ni-Mo/beta zeolite-ASA and Ni-Mo/USY zeolite-ASA catalysts were prepared by the impregnation method. The samples were characterized with X-Ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM)...
متن کاملPromotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3
A series of Fe–Ce–Ti catalysts were prepared via co-precipitation method to investigate the effect of doping Ce into Fe–Ti catalysts for selective catalytic reduction of NO with NH3. The NO conversion over Fe–Ce–Ti catalysts was considerably improved after Ce doping compared to that of Fe–Ti catalysts. The Fe(0.2)–Ce(0.4)–Ti catalysts exhibited superior catalytic activity to that of Fe(0.2)–Ti ...
متن کاملSelective Catalytic Reduction of CuO/SiO2 Nano-composites towards NO Reduction in Gas-phase
The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method. In this investigation, a new molar ratio of H2O/TEOS was determined to be 11.7. Also, the necessary amounts of tri-hydrated copper nitrate and penta-hydrated copper sulfate were added to the solution in such a manner that the concentration of the copper oxide in final solut...
متن کاملNon-oxidative conversion of methane to aromatics over modified zeolite catalysts by transitional metals
The activity of different transitional metals over modified H-ZSM-5 catalysts for methane conversion to aromatics was compared. The first group of catalysts was Mo-impregnated H-ZSM-5 zeolites with 1, 3 and 6 wt% of Mo. The second group was M(3 wt%)- impregnated H-ZSM-5 (M: Ag, Cd, Cr, Mo, Zn and Mn). The catalytic activity of the first group was investigated at 600, 700 and 800 °C and gas hour...
متن کاملHydrogen and Multiwall Carbon Nanotubes production by Catalytic Decomposition of Methane: thermogravimetric analysis and scaling-up of Fe-Mo catalysts
Fe-based catalysts doped with Mo were prepared and tested in the catalytic decomposition of methane (CDM), which aims for the co-production of CO2-free hydrogen and tubular nanostructured carbon (NC). Catalysts performance were tested in a thermobalance operating either at isothermal or temperature programmed mode by monitoring the weight changes with time or temperature, respectively, as a res...
متن کامل