The Impact of Dielectric Constant Model and Surface Reference on Differences between Smos and Aquarius Sea Surface Salinity

نویسندگان

  • E. P. Dinnat
  • J. Boutin
  • X. Yin
  • D. M. Le Vine
چکیده

Two ongoing space missions share the scientific objective of mapping the global Sea Surface Salinity (SSS), yet their observations show significant discrepancies. ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius use L-band (1.4 GHz) radiometers to measure emission from the sea surface and retrieve SSS. Significant differences in SSS retrieved by both sensors are observed, with SMOS SSS being generally lower than Aquarius SSS, except for very cold waters where SMOS SSS is the highest overall. Figure 1 is an example of the difference between the SSS retrieved by SMOS and Aquarius averaged over one month and 1 degree in longitude and latitude. Differences are mostly between -1 psu and +1 psu (psu, practical salinity unit), with a significant regional and latitudinal dependence. We investigate the impact of the vicarious calibration and retrieval algorithm used by both mission on these differences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new empirical model of sea surface microwave emissivity for salinity remote sensing

[1] SMOS (Soil Moisture and Ocean Salinity) is a European Space Agency mission that aims at generating global ocean salinity maps with an accuracy of 0.1 psu, at spatial and temporal resolution suitable for climatic studies. The satellite sensor is an L-band (1400–1427 MHz) aperture synthesis interferometric radiometer. Sea surface salinity (SSS) can be retrieved since the brightness temperatur...

متن کامل

SMOS: Measuring Sea Surface Salinity from Space

In May 1999, the European Space Agency (ESA) selected SMOS as an Earth Explorer Opportunity mission. One of its goals is the generation of global Sea Surface Salinity (SSS) maps. The sensor embarked is an L-band interferometric radiometer with full-polarimetric capability called MIRAS. The retrieval of SSS from microwave measurements is based on the fact that the brightness temperature (TB) of ...

متن کامل

Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations

[1] At its seasonal peak the Amazon/Orinoco plume covers a region of 10 km in the western tropical Atlantic with more than 1 m of extra freshwater, creating a near-surface barrier layer (BL) that inhibits mixing and warms the sea surface temperature (SST) to >29 C. Here new sea surface salinity (SSS) observations from the Aquarius/SACD and SMOS satellites help elucidate the ocean response to hu...

متن کامل

Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations

We study the signature of rainfall on S1cm, the sea surface salinity retrieved from the Soil Moisture and Ocean Salinity (SMOS) satellite mission first by comparing SMOS S1cm with ARGO sea surface salinity measured at about 5 m depth in the Intertropical Convergence Zone (ITCZ) and in the Southern Pacific Convergence Zone; second by investigating spatial variability of SMOS S1cm related to rain...

متن کامل

Determination of the sea surface emissivity at L-band and application to SMOS salinity retrieval algorithms: Review of the contributions of the UPC-ICM

[1] This work describes the main effects that have to be taken into account to model the sea surface emission at L-band, and the existing approaches to perform the sea surface salinity retrieval from multiangular radiometric measurements. This manuscript reviews the activities carried out in these fields during the past years by the Universitat Politècnica de Catalunya (UPC) in collaboration wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015