Decoration Invariants for Horseshoe Braids

نویسندگان

  • ANDRÉ DE CARVALHO
  • TOBY HALL
چکیده

The Decoration Conjecture describes the structure of the set of braid types of Smale’s horseshoe map ordered by forcing, providing information about the order in which periodic orbits can appear when a horseshoe is created. A proof of this conjecture is given for the class of so-called lone decorations, and it is explained how to calculate associated braid conjugacy invariants which provide additional information about forcing for horseshoe braids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vassiliev and Quantum Invariants of Braids

We prove that braid invariants coming from quantum gl(N) separate braids, by recalling that these invariants (properly decomposed) are all Vassiliev invariants, showing that all Vassiliev invariants of braids arise in this way, and reproving that Vassiliev invariants separate braids. We discuss some corollaries of this result and of our method of proof.

متن کامل

Dynamical Systems on Three Manifolds Part I: Knots, Links and Chaos

In this paper, we give an explicit construction of dynamical systems (defined within a solid torus) containing any knot (or link) and arbitrarily knotted chaos. The first is achieved by expressing the knots in terms of braids, defining a system containing the braids and extending periodically to obtain a system naturally defined on a torus and which contains the given knotted trajectories. To g...

متن کامل

Simple Conjugacy Invariants for Braids

We define simple conjugacy invariants of braids, which we call turning numbers, and investigate their properties. Since our motivation comes from the investigation of periodic orbits of orientation preserving disk homeomorphisms, turning numbers work best for braids with the cyclic permutation, especially for positive permutation cyclic braids.

متن کامل

Vassiliev invariants for braids on surfaces

We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit an universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the considered surface. 1 Definitions and statements 1.

متن کامل

Representations of Composite Braids and Invariants for Mutant Knots and Links in Chern - Simons Field Theories

We show that any of the new knot invariants obtained from Chern-Simons theory based on an arbitrary non-abelian gauge group do not distinguish isotopically inequivalent mutant knots and links. In an attempt to distinguish these knots and links, we study Murakami (symmetrized version) r-strand composite braids. Salient features of the theory of such composite braids are presented. Representation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008