VGLUT2 controls heat and punctuate hyperalgesia associated with nerve injury via TRPV1-Cre primary afferents

نویسندگان

  • Katarzyna Rogoz
  • Ludvig Stjärne
  • Klas Kullander
  • Malin C. Lagerström
چکیده

Nerve injury induces a state of prolonged thermal and mechanical hypersensitivity in the innervated area, causing distress in affected individuals. Nerve injury-induced hypersensitivity is partially due to increased activity and thereby sustained release of neurotransmitters from the injured fibers. Glutamate, a prominent neurotransmitter in primary afferents, plays a major role in development of hypersensitivity. Glutamate is packed in vesicles by vesicular glutamate transporters (VGLUTs) to enable controlled release upon depolarization. While a role for peripheral VGLUTs in nerve injury-induced pain is established, their contribution in specific peripheral neuronal populations is unresolved. We investigated the role of VGLUT2, expressed by transient receptor potential vanilloid (TRPV1) fibers, in nerve injury-induced hypersensitivity. Our data shows that removal of Vglut2 from Trpv1-Cre neurons using transgenic mice abolished both heat and punctuate hyperalgesia associated with nerve injury. In contrast, the development of cold hypersensitivity after nerve injury was unaltered. Here, we show that, VGLUT2-mediated glutamatergic transmission from Trpv1-Cre neurons selectively mediates heat and mechanical hypersensitivity associated with nerve injury. Our data clarifies the role of the Trpv1-Cre population and the dependence of VGLUT2-mediated glutamatergic transmission in nerve injury-induced hyperalgesia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glutamate, substance P, and calcitonin gene-related peptide cooperate in inflammation-induced heat hyperalgesia.

The transient receptor potential cation channel subfamily V member 1 (TRPV1) is known as a thermosensor and integrator of inflammation-induced hyperalgesia. TRPV1 is expressed in a subpopulation of primary afferent neurons that express several different neurotransmitters. The role of the TRPV1 channel in the development of hyperalgesia is established, but the role of the neurotransmitter glutam...

متن کامل

Glutamate, Substance P, and Calcitonin Gene-Related Peptide Cooperate in Inflammation-Induced Heat Hyperalgesia s

The transient receptor potential cation channel subfamily V member 1 (TRPV1) is known as a thermosensor and integrator of inflammation-induced hyperalgesia. TRPV1 is expressed in a subpopulation of primary afferent neurons that express several different neurotransmitters. The role of the TRPV1 channel in the development of hyperalgesia is established, but the role of the neurotransmitter glutam...

متن کامل

Phenotyping the function of TRPV1-expressing sensory neurons by targeted axonal silencing.

Specific somatosensations may be processed by different subsets of primary afferents. C-fibers expressing heat-sensitive TRPV1 channels are proposed, for example, to be heat but not mechanical pain detectors. To phenotype in rats the sensory function of TRPV1(+) afferents, we rapidly and selectively silenced only their activity, by introducing the membrane-impermeant sodium channel blocker QX-3...

متن کامل

Aberrant TRPV1 Expression in Heat Hyperalgesia Associated with Trigeminal Neuropathic Pain

Trigeminal neuropathic pain is a facial pain syndrome associated with trigeminal nerve injury. However, the mechanism of trigeminal neuropathic pain is poorly understood. This study aimed to determine the role of transient receptor potential vanilloid 1 (TRPV1) in heat hyperalgesia in a trigeminal neuropathic pain model. We evaluated nociceptive responses to mechanical and heat stimuli using a ...

متن کامل

VGLUT2 expression in primary afferent neurons is essential for normal acute pain and injury-induced heat hypersensitivity.

Dorsal root ganglia (DRG) neurons, including the nociceptors that detect painful thermal, mechanical, and chemical stimuli, transmit information to spinal cord neurons via glutamatergic and peptidergic neurotransmitters. However, the specific contribution of glutamate to pain generated by distinct sensory modalities or injuries is not known. Here we generated mice in which the vesicular glutama...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015