Spatial analysis of Cdc42 activity reveals a role for plasma membrane–associated Cdc42 in centrosome regulation
نویسندگان
چکیده
The ability of the small GTPase Cdc42 to regulate diverse cellular processes depends on tight spatial control of its activity. Cdc42 function is best understood at the plasma membrane (PM), where it regulates cytoskeletal organization and cell polarization. Active Cdc42 has also been detected at the Golgi, but its role and regulation at this organelle are only partially understood. Here we analyze the spatial distribution of Cdc42 activity by moni-toring the dynamics of the Cdc42 FLARE biosensor using the phasor approach to FLIM-FRET. Phasor analysis revealed that Cdc42 is active at all Golgi cisternae and that this activity is controlled by Tuba and ARHGAP10, two Golgi-associated Cdc42 regulators. To our surprise, FGD1, another Cdc42 GEF at the Golgi, was not required for Cdc42 regulation at the Golgi, although its depletion decreased Cdc42 activity at the PM. Similarly, changes in Golgi morphology did not affect Cdc42 activity at the Golgi but were associated with a substantial reduction in PM-associated Cdc42 activity. Of interest, cells with reduced Cdc42 activity at the PM displayed altered centrosome morphology, suggesting that centrosome regulation may be mediated by active Cdc42 at the PM. Our study describes a novel quantitative approach to determine Cdc42 activity at specific subcellular locations and reveals new regulatory principles and functions of this small GTPase.
منابع مشابه
Cdc42 regulates microtubule-dependent Golgi positioning.
The molecular mechanisms underlying cytoskeleton-dependent Golgi positioning are poorly understood. In mammalian cells, the Golgi apparatus is localized near the juxtanuclear centrosome via dynein-mediated motility along microtubules. Previous studies implicate Cdc42 in regulating dynein-dependent motility. Here we show that reduced expression of the Cdc42-specific GTPase-activating protein, AR...
متن کاملSpatial regulation of Cdc42 during cytokinesis.
Cdc42 GTPase plays a critical role in the establishment of cell polarity in most eukaryotic organisms. Cdc42 active state, as that of other GTPases, depends on the bound nucleotide. The protein with GTP is active, and only in this state can it interact with different target effector proteins. The spatio-temporal control of Cdc42 activity is therefore necessary to generate growth polarity. In fi...
متن کاملRga6 is a fission yeast Rho GAP involved in Cdc42 regulation of polarized growth
Active Cdc42 is essential for the establishment of polarized growth. This GTPase is negatively regulated by the GTPase-activating proteins (GAPs), which are important for the spatial specificity of Cdc42 function. Rga4 is the only GAP described as negative regulator of fission yeast Cdc42. We report here that Rga6 is another fission yeast Cdc42 GAP which shares some functions with Rga4. Cells l...
متن کاملCdc42 Interaction with N-WASP and Toca-1 Regulates Membrane Tubulation, Vesicle Formation and Vesicle Motility: Implications for Endocytosis
Transducer of Cdc42-dependent actin assembly (Toca-1) consists of an F-BAR domain, a Cdc42 binding site and an SH3 domain. Toca-1 interacts with N-WASP, an activator of actin nucleation that binds Cdc42. Cdc42 may play an important role in regulating Toca-1 and N-WASP functions. We report here that the cellular expression of Toca-1 and N-WASP induces membrane tubulation and the formation of mot...
متن کاملCritical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase.
Chp (Cdc42 homologous protein) shares significant sequence and functional identity with the human Cdc42 small GTPase, and like Cdc42, promotes formation of filopodia and activates the p21-activated kinase serine/threonine kinase. However, unlike Cdc42, Chp contains unique amino- and carboxyl-terminal extensions. Here we determined whether Chp, like Cdc42, can promote growth transformation and e...
متن کامل