Deep Incremental Boosting
نویسندگان
چکیده
This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep Incremental Boosting brings to traditional Ensemble methods in Deep Learning.
منابع مشابه
Boosted Residual Networks
In this paper we present a new ensemble method, called Boosted Residual Networks, which builds an ensemble of Residual Networks by growing the member network at each round of boosting. The proposed approach combines recent developements in Residual Networks a method for creating very deep networks by including a shortcut layer between different groups of layers with the Deep Incremental Boostin...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملIncremental Boosting Convolutional Neural Network for Facial Action Unit Recognition
Recognizing facial action units (AUs) from spontaneous facial expressions is still a challenging problem. Most recently, CNNs have shown promise on facial AU recognition. However, the learned CNNs are often overfitted and do not generalize well to unseen subjects due to limited AU-coded training images. We proposed a novel Incremental Boosting CNN (IB-CNN) to integrate boosting into the CNN via...
متن کاملCalibrated Boosting-Forest
Excellent ranking power along with well calibrated probability estimates are needed in many classification tasks. In this paper, we introduce a technique, Calibrated Boosting-Forest1 that captures both. This novel technique is an ensemble of gradient boosting machines that can support both continuous and binary labels. While offering superior ranking power over any individual regression or clas...
متن کاملSelfieBoost: A Boosting Algorithm for Deep Learning
We describe and analyze a new boosting algorithm for deep learning called SelfieBoost. Unlike other boosting algorithms, like AdaBoost, which construct ensembles of classifiers, SelfieBoost boosts the accuracy of a single network. We prove a log(1/ ) convergence rate for SelfieBoost under some “SGD success” assumption which seems to hold in practice.
متن کامل