Improving Stability of Decision Trees
نویسندگان
چکیده
Decision-tree algorithms are known to be unstable: small variations in the training set can result in different trees and different predictions for the same validation examples. Both accuracy and stability can be improved by learning multiple models from bootstrap samples of training data, but the “meta-learner” approach makes the extracted knowledge hardly interpretable. In the following paper, we present the Info-Fuzzy Network (IFN), a novel information-theoretic method for building stable and comprehensible decision-tree models. The stability of the IFN algorithm is ensured by restricting the tree structure to using the same feature for all nodes of the same tree level and by the built-in statistical significance tests. The IFN method is shown empirically to produce more compact and stable models than the “meta-learner” techniques, while preserving a reasonable level of predictive accuracy.
منابع مشابه
A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملPredicting The Type of Malaria Using Classification and Regression Decision Trees
Predicting The Type of Malaria Using Classification and Regression Decision Trees Maryam Ashoori1 *, Fatemeh Hamzavi2 1School of Technical and Engineering, Higher Educational Complex of Saravan, Saravan, Iran 2School of Agriculture, Higher Educational Complex of Saravan, Saravan, Iran Abstract Background: Malaria is an infectious disease infecting 200 - 300 million people annually. Environme...
متن کاملStochastic Attribute Selection Committees withMultiple Boosting : Learning More
Classiier learning is a key technique for KDD. Approaches to learning classiier committees, including Boosting, Bagging, Sasc, and SascB, have demonstrated great success in increasing the prediction accuracy of decision trees. Boosting and Bagging create diierent classiiers by modifying the distribution of the training set. Sasc adopts a diierent method. It generates committees by stochastic ma...
متن کاملKnowledge Acquisition from Examples Via Multiple Models
If it is to qualify as knowledge, a learner's output should be accurate, stable and com-prehensible. Learning multiple models can improve signiicantly on the accuracy and stability of single models, but at the cost of losing their comprehensibility (when they possess it, as do, for example, simple decision trees and rule sets). This paper proposes and evaluates CMM, a meta-learner that seeks to...
متن کاملDecision trees and transient stability of electric power systems
A general inductive inference method is proposed and applied to the automatic building of decision trees for the transient stability assessment of power systems. On the basis of large sets of simulations, the essential features of the method are analysed and illustrated. Al~lraet-An inductive inference method for the automatic building of decision trees is investigated. Among its various tasks,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJPRAI
دوره 16 شماره
صفحات -
تاریخ انتشار 2002