Viscosity of a concentrated suspension of rigid monosized particles.

نویسنده

  • H J H Brouwers
چکیده

This paper addresses the relative viscosity of concentrated suspensions loaded with unimodal hard particles. So far, exact equations have only been put forward in the dilute limit, e.g., by Einstein [A. Einstein, Ann. Phys. 19, 289 (1906) (in German); Ann. Phys. 34, 591 (1911) (in German)] for spheres. For larger concentrations, a number of phenomenological models for the relative viscosity was presented, which depend on particle concentration only. Here, an original and exact closed form expression is derived based on geometrical considerations that predicts the viscosity of a concentrated suspension of monosized particles. This master curve for the suspension viscosity is governed by the relative viscosity-concentration gradient in the dilute limit (for spheres the Einstein limit) and by random close packing of the unimodal particles in the concentrated limit. The analytical expression of the relative viscosity is thoroughly compared with experiments and simulations reported in the literature, concerning both dilute and concentrated suspensions of spheres, and good agreement is found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersion Properties of Nano YSZ Particles in Aqueous Suspensions

In the present research, the aqueous suspensions of nano-sized YSZ particles were prepared using a common and available dispersant (Dolapix CE64) at different pH values and their stability were evaluated through the sedimentation height, viscosity measurement, and microstructural observation. Different amounts of dispersant were tested and the optimum percentage was examined by measuring the vi...

متن کامل

Heat transfer and flow of a dense suspension between two cylinders

Concentrated suspensions, composed of solid particles and fluids, are used in many industrial applications. In this paper, we study the effects of temperature on the flow of a concentrated (dense) suspension between two long rotating cylinders. The viscosity of the suspension is assumed to depend on temperature and volume fraction of the solid particles. Based on these concepts, a generalized v...

متن کامل

On the Viscosity of Concentrated Suspensions of Charged Colloids

This work is concerned with the theoretical estimation of the low-shear viscosity of concentrated suspensions of charged-stabilized latex particles. Calculations are based on the assumption that particles interacting through purely repulsive potentials behave as equivalent hard-spheres (HS), and suspension viscosity may be analyzed in the framework of HS systems. In order to predict numerically...

متن کامل

Rheology and Structure of Concentrated Suspensions of Hard Spheres. Shear Induced Particle Migration

The apparent shear viscosity, in the non-Browman Ilmit, for a homogeneous suspension of monodispersed hard spheres in systems ranging from dilute to concentrated was previously established. From an estimation of the viscous dissipation. We use the inter-particle distance dependence of the shear viscosity for determining the components of a local stress tensor associated with the transient netwo...

متن کامل

Network Approximation for Effective Viscosity of Concentrated Suspensions with Complex Geometry

We study suspensions of rigid particles (inclusions) in a viscous incompressible fluid. The particles are close to touching one another, so that the suspension is near the packing limit, and the flow at small Reynolds number is modeled by the Stokes equations. The objective is to determine the dependence of the effective viscosity 〈μ〉 on the geometric properties of the particle array. We study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2010