3-Methylthiopropionic Acid of Rhizoctonia solani AG-3 and Its Role in the Pathogenicity of the Fungus
نویسندگان
چکیده
Studies were conducted to determine the role of 3-methylthioproprionic acid (MTPA) in the pathogenicity of potato stem canker, Rhizoctonia solani, and the concentrations required to inhibit growth of R. solani under laboratory and plant house-based conditions. The experiments were laid out in a completely randomized design with five treatments and five replications. The treatments were 0, 1, 2, 4, and 8 mM concentrations of MTPA. The purified toxin exhibited maximal activity at pH 2.5 and 30°C. MTPA at 1, 2, 4, and 8 mM levels reduced plant height, chlorophyll content, haulm fresh weight, number of stolons, canopy development, and tuber weight of potato plants, as compared to the control. MTPA significantly affected mycelial growth with 8 mM causing the highest infection. The potato seedlings treated with MTPA concentrations of 1.0-8.0 mM induced necrosis of up to 80% of root system area. Cankers were resulted from the injection of potato seedling stems with 8.0 mM MTPA. The results showed the disappearance of cell membrane, rough mitochondrial and cell walls, change of the shape of chloroplasts, and swollen endoplasmic reticulum. Seventy-six (76) hours after toxin treatment, cell contents were completely broken, cytoplasm dissolved, and more chromatin were seen in the nucleus. The results suggested that high levels of the toxin concentration caused cell membrane and cytoplasm fracture. The integrity of cellular structure was destroyed by the phytotoxin. The concentrations of the phytotoxin were significantly correlated with pathogenicity and caused damage to the cell membrane of potato stem base tissue.
منابع مشابه
First Report of Web Blight of Rosemary (Rosmarinus officinalis) Caused by Rhizoctonia solani AG-1-IB in Korea
Herein, we report the first occurrence of web blight of rosemary caused by Rhizoctonia solani AG-1-IB in Gangneung, Gangwon Province, Korea, in August 2014. The leaf tissues of infected rosemary plants were blighted and white mycelial growth was seen on the stems. The fungus was isolated from diseased leaf tissue and cultured on potato dextrose agar for identification. The young hyphae had acut...
متن کاملNew Anastomosis Group G (AG-G) of binucleate Rhizoctonia sp., the causal agent of root rot disease on miniature roses in Iran
Rhizoctonia-like fungi were isolated from the infected roots of miniature rose (Rosa hybrida cv. Linda) plant with chlorosis and necrosis symptoms, grown in commercial glasshouse in Rafsanjan, Iran, during the autumn of 2011. All of the isolates were identified as binucleate Rhizoctonia sp. on the basis of hyphal characteristics and nuclei number. They were tested for detection of the anastomos...
متن کاملTransformation of Potato (Solanum tuberosumcv.Savalan) by Chitinase and β-1,3-Glucanase Genes of Myco-Parasitic Fungi Towards Improving Resistance to Rhizoctonia solani AG-3
Potato (Solanum tuberosum L.) an agro-economically important food crop in the world, is sensitive to many fungal pathogens including Rhizoctonia solani (AG-3), the causal agent of stem and root rot diseases. Chitinase and glucanase are cell wall degrading enzymes which have been shown to have high antifungal activity against a wide range of phytopathogenic fungi. In the present study, plasmid p...
متن کاملGene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors.
Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping-off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. To get broad gene-expression coverage, two normalized EST libraries were developed from mycelia g...
متن کاملMass-spectrometry data for Rhizoctonia solani proteins produced during infection of wheat and vegetative growth
Rhizoctonia solani is an important root infecting pathogen of a range of food staples worldwide including wheat, rice, maize, soybean, potato, legumes and others. Conventional resistance breeding strategies are hindered by the absence of tractable genetic resistance in any crop host. Understanding the biology and pathogenicity mechanisms of this fungus is important for addressing these disease ...
متن کامل