Quantifying multivariate redundancy with maximum entropy decompositions of mutual information

نویسنده

  • Daniel Chicharro
چکیده

Williams and Beer (2010) proposed a nonnegative mutual information decomposition, based on the construction of redundancy lattices, which allows separating the information that a set of variables contains about a target variable into nonnegative components interpretable as the unique information of some variables not provided by others as well as redundant and synergistic components. However, the definition of multivariate measures of redundancy that comply with nonnegativity and conform to certain axioms that capture conceptually desirable properties of redundancy has proven to be elusive. We here present a procedure to determine nonnegative multivariate redundancy measures, within the maximum entropy framework. In particular, we generalize existing bivariate maximum entropy measures of redundancy and unique information, defining measures of the redundant information that a group of variables has about a target, and of the unique redundant information that a group of variables has about a target that is not redundant with information from another group. The two key ingredients for this approach are: First, the identification of a type of constraints on entropy maximization that allows isolating components of redundancy and unique redundancy by mirroring them to synergy components. Second, the construction of rooted tree-based decompositions of the mutual information, which conform to the axioms of the redundancy lattice by the local implementation at each tree node of binary unfoldings of the information using hierarchically related maximum entropy constraints. Altogether, the proposed measures quantify the different multivariate redundancy contributions of a nonnegative mutual information decomposition consistent with the redundancy lattice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring Multivariate Redundant Information with Pointwise Common Change in Surprisal

The problem of how to properly quantify redundant information is an open question that has been the subject of much recent research. Redundant information refers to information about a target variable S that is common to two or more predictor variables X i. It can be thought of as quantifying overlapping information content or similarities in the representation of S between the X i. We present ...

متن کامل

Synergy and Redundancy in Dual Decompositions of Mutual Information Gain and Information Loss

Williams and Beer (2010) proposed a nonnegative mutual information decomposition, based on the construction of information gain lattices, which allows separating the information that a set of variables contains about another variable into components, interpretable as the unique information of one variable, or redundant and synergy components. In this work, we extend this framework focusing on t...

متن کامل

The Partial Entropy Decomposition: Decomposing multivariate entropy and mutual information via pointwise common surprisal

Obtaining meaningful quantitative descriptions of the statistical dependence within multivariate systems is a difficult open problem. Recently, the Partial Information Decomposition (PID) was proposed to decompose mutual information (MI) about a target variable into components which are redundant, unique and synergistic within different subsets of predictor variables. Here, we propose to apply ...

متن کامل

Exact partial information decompositions for Gaussian systems based on dependency constraints

The Partial Information Decomposition (PID) [1] provides a theoretical framework to characterize and quantify the structure of multivariate information sharing. A new method (Idep) has recently been proposed for computing a two-predictor partial information decomposition (PID) over discrete spaces [2]. A lattice of maximum entropy probability models is constructed based on marginal dependency c...

متن کامل

Short Term Electrical Load Forecasting Using Mutual Information Based Feature Selection with Generalized Minimum-Redundancy and Maximum-Relevance Criteria

Abstract: A feature selection method based on the generalized minimum redundancy and maximum relevance (G-mRMR) is proposed to improve the accuracy of short-term load forecasting (STLF). First, mutual information is calculated to analyze the relations between the original features and the load sequence, as well as the redundancy among the original features. Second, a weighting factor selected b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017