Reduced graphene oxide with superior cycling stability and rate capability for sodium storage
نویسندگان
چکیده
Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show that the RGO anode allowed significant sodium ion insertion, leading to higher capacity at high current density compared to the previously reported results for carbon materials. This is due to the fact that RGO possesses higher electrical conductivity and is a more active host, with large interlayer distances and a disordered structure, enabling it to store a higher amount of Na ions. RGO anode exhibits high capacity combined with long-term cycling stability at high current densities, leading to reversible capacity as high as 174.3 mAh g-1 at 0.2 C (40 mA g-1), and even 93.3 mAh g-1 at 1 C (200 mA g-1) after 250 cycles. Furthermore, RGO could yield a high capacity of 141 mAh g-1 at 0.2 C (40 mA g-1) over 1000 cycles. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability.
Exploitation of high-performance anode materials is essential but challenging to the development of sodium-ion batteries (SIBs). Among all proposed anode materials for SIBs, sulfides have been proved promising candidates due to their unique chemical and physical properties. In this work, a facile solvothermal method to in situ decorate cobalt sulfide (CoS) nanoplates on reduced graphene oxide (...
متن کاملGrowth of Ultrathin ZnCo2O4 Nanosheets on Reduced Graphene Oxide with Enhanced Lithium Storage Properties
The growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide (denoted as rGO/ZnCo2O4) via a facile low-temperature solution method combined with a subsequent annealing treatment is reported. With the assistance of citrate, interconnected ZnCo2O4 nanosheets can assemble into hierarchically porous overlays on both sides of rGO sheets. Such a hybrid nanostructure would effectively faciliat...
متن کاملAn Electrochemical Investigation of Nano Cerium Oxide/Graphene as an Electrode Material for Supercapacitors
In this paper, the effect of cationic and anionic ion sizes on the charge storage capability of graphene nanosheets is investigated. The electrochemical properties of the produced electrode are studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques in 3M NaCl, NaOH, and KOH electrolytes. Scanning electron microscopy (SEM) is used to characterize the mi...
متن کاملControllable Preparation of V2O5/Graphene Nanocomposites as Cathode Materials for Lithium-Ion Batteries
Transition metal oxides and graphene composites have been widely reported in energy storage and conversion systems. However, the controllable synthesis of graphene-based nanocomposites with tunable morphologies is far less reported. In this work, we report the fabrication of V2O5 and reduced graphene oxide composites with nanosheet or nanoparticle-assembled subunits by adjusting the solvotherma...
متن کاملSolvothermal-induced self-assembly of Fe2O3/GS aerogels for high Li-storage and excellent stability.
A novel solvothermal-induced self-assembly approach, using colloid sol as precursor, is developed to construct monolithic 3D metal oxide/GS (graphene sheets) aerogels. During the solvothermal process, graphene oxide (GO) is highly reduced to GS and self-assembles into 3D macroscopic hydrogels, accompanying with in situ transformation of colloid sol to metal oxides. As a proof of concept, Fe2 O3...
متن کامل