Bost–connes Systems, Categorification, Quantum Statistical Mechanics, and Weil Numbers
نویسنده
چکیده
In this article we develop a broad generalization of the classical Bost-Connes system, where roots of unit are replaced by an algebraic datum consisting of an abelian group and a semi-group of endomorphisms. Examples include roots of unit, Weil restriction, algebraic numbers, Weil numbers, CM fields, germs, completion of Weil numbers, etc. Making use of the Tannakian formalism, we categorify these algebraic data. For example, the categorification of roots of unit is given by a limit of orbit categories of Tate motives while the categorification of Weil numbers is given by Grothendieck’s category of numerical motives over a finite field. To some of these algebraic data (e.g. roots of unity, algebraic numbers, Weil numbers, etc), we associate also a quantum statistical mechanical system with several remarkable properties, which generalize those of the classical Bost–Connes system. The associated partition function, low temperature Gibbs states, and Galois action on zerotemperature states are then studied in detail. For example, we show that in the particular case of the Weil numbers the partition function and the low temperature Gibbs states can be described as series of polylogarithms.
منابع مشابه
Quantum Statistical Mechanics over Function Fields
It has become increasingly evident, starting from the seminal paper of Bost and Connes [3] and continuing with several more recent developments ([8], [10], [12], [13], [22], [24]), that there is a rich interplay between quantum statistical mechanics and arithmetic. In the case of number fields, the symmetries and equilibrium states of the Bost–Connes system are closely linked to the explicit cl...
متن کاملQuantum Statistical Mechanics over Function Fields Caterina Consani and Matilde Marcolli
It has become increasingly evident, starting from the seminal paper of Bost and Connes [3] and continuing with several more recent developments ([8], [10], [12], [13], [22], [24]), that there is a rich interplay between quantum statistical mechanics and arithmetic. In the case of number fields, the symmetries and equilibrium states of the Bost–Connes system are closely linked to the explicit cl...
متن کاملQuantum Statistical Mechanics over Function Fields Caterina Consani and Matilde Marcolli
It has become increasingly evident, starting from the seminal paper of Bost and Connes [2] and continuing with several more recent developments ([7], [9], [10], [11], [18], [20]), that there is a rich interplay between quantum statistical mechanics and arithmetic. In the case of number fields, the symmetries and equilibrium states of the Bost–Connes system are closely linked to the explicit cla...
متن کاملThe Weil Proof and the Geometry of the Adeles Class Space Alain Connes, Caterina Consani, and Matilde Marcolli
Dedicated to Yuri Manin on the occasion of his 70th birthday O simili o dissimili che sieno questi mondi non con minor raggione sarebe bene a l'uno l'essere che a l'altro Giordano Bruno – De l'infinito, universo e mondi Contents 1. Introduction 2 2. A look at the Weil proof 4 2.1. Correspondences and divisors 7 2.2. The explicit formula 8 2.3. Riemann–Roch and positivity 9 2.4. A tentative dict...
متن کاملThe Weil Proof and the Geometry of the Adeles Class Space
Dedicated to Yuri Manin on the occasion of his 70th birthday O simili o dissimili che sieno questi mondi non con minor raggione sarebe bene a l'uno l'essere che a l'altro Giordano Bruno – De l'infinito, universo e mondi Contents 1. Introduction 2 2. A look at the Weil proof 4 2.1. Correspondences and divisors 6 2.2. The explicit formula 8 2.3. Riemann–Roch and positivity 9 2.4. A tentative dict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014