Constrained extremal problems in the Hardy space H2 and Carleman's formulas
نویسندگان
چکیده
We study some approximation problems on a strict subset of the circle by analytic functions of the Hardy space H of the unit disk (in C), whose modulus satisfy a pointwise constraint on the complentary part of the circle. Existence and uniqueness results, as well as pointwise saturation of the constraint, are established. We also derive a critical point equation which gives rise to a dual formulation of the problem. We further compute directional derivatives for this functional as a computational means to approach the issue. We then consider a finite-dimensional polynomial version of the bounded extremal problem. Key-words: Hardy spaces, analytic functions, approximation, bounded extremal problems, Carleman formulas. ∗ INRIA, BP 93, 06902 Sophia-Antipolis Cedex, FRANCE Problèmes extrémaux contraints dans l’espace de Hardy H et formules de Carleman Résumé : Nous étudions des problèmes d’approximation sur un strict sousensemble du cercle par des fonctions analytiques de l’espace de Hardy H du disque unité (de C), soumises en module à une contrainte ponctuelle sur la partie complémentaire du cercle. Des résultats d’existence, d’unicité et de saturation de la contrainte sont établis, ainsi qu’une équation aux points critiques qui permet de proposer une formule de dualité. Nous considérons enfin une version polynômiale (de dimension finie) de ces problèmes extrémaux bornés. Mots-clés : Espaces de Hardy, fonctions analytiques, approximation, problèmes extrémaux bornés, formules de Carleman. Constrained extremal problems and Carleman’s formulas 3
منابع مشابه
Constrained extremal problems in the Hardy space H 2 and
We study some approximation problems on a strict subset of the circle by analytic functions of the Hardy space H of the unit disk (in C), whose modulus satisfy a pointwise constraint on the complentary part of the circle. Existence and uniqueness results, as well as pointwise saturation of the constraint, are established. We also derive a critical point equation which gives rise to a dual formu...
متن کاملSpectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2
Let -----. For an analytic self-map --- of --- , Let --- be the composition operator with composite map --- so that ----. Let --- be a bounded analytic function on --- . The weighted composition operator --- is defined by --- . Suppose that --- is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....
متن کاملChain hexagonal cacti: extremal with respect to the eccentric connectivity index
In this paper we present explicit formulas for the eccentric connectivity index of three classes of chain hexagonal cacti. Further, it is shown that the extremal chain hexagonal cacti with respect to the eccentric connectivity index belong to one of the considered types. Some open problems and possible directions of further research are mentioned in the concluding section.
متن کاملSub-Bergman Hilbert Spaces on the Unit Disk
If the contraction T is a Toeplitz operator on H2 or A2 induced by an analytic function φ, we then denote the resulting space by H(φ). Similarly, if T is the Toeplitz operator on H2 or A2 induced by a conjugate analytic symbol φ, then we denote the resulting space by H(φ). In the context of Hardy spaces, H(φ) and H(φ) are called sub-Hardy Hilbert spaces by Sarason in [6]. We thus arrive at the ...
متن کاملA Survey of Certain Extremal Problems for Non-vanishing Analytic Functions
This paper surveys a large class of nonlinear extremal problems in Hardy and Bergman spaces. We discuss the general approach to such problems in Hardy spaces developed by S. Ya. Khavinson in the 1960s, but not well known in the West. We also discuss the major difficulties distinguishing the Bergman space setting and formulate some open problems.
متن کامل