Conjugate Gradient Methods for Solving the Smallest Eigenpair of Large Symmetric Eigenvalue Problems

نویسنده

  • T. FENG
چکیده

In this paper, a detailed description of CG for evaluating eigenvalue problems by minimizing the Rayleigh quotient is presented from both theoretical and computational viewpoints. Three variants of CG together with their asymptotic behaviours and restarted schemes are discussed. In addition, it is shown that with a generally selected preconditioning matrix the actual performance of the PCG scheme may not be superior to an accelerated inverse power method. Finally, some test problems in the finite element simulation of 2-D and 3-D large scale structural models with up to 20200 unknowns are performed to examine and demonstrate the performances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem

To compute the smallest eigenvalues and associated eigenvectors of a real symmetric matrix, we consider the Jacobi–Davidson method with inner preconditioned conjugate gradient iterations for the arising linear systems. We show that the coe9cient matrix of these systems is indeed positive de:nite with the smallest eigenvalue bounded away from zero. We also establish a relation between the residu...

متن کامل

A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems

In this paper‎, ‎two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS})‎ ‎conjugate gradient method are presented to solve unconstrained optimization problems‎. ‎A remarkable property of the proposed methods is that the search direction always satisfies‎ ‎the sufficient descent condition independent of line search method‎, ‎based on eigenvalue analysis‎. ‎The globa...

متن کامل

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

Variable-step preconditioned conjugate gradient method for partial symmetric eigenvalue problems

in which A is a large sparse symmetric positive definite matrix, λ is an eigenvalue and u is a corresponding eigenvector. The evaluation of one or more smallest eigenpairs has much practical interest for describing the characteristics of physical phenomena. For example, smallest eigenvalues characterize the base frequences of vibrating mechanical structures. Typically, the matrix A is a discret...

متن کامل

Preconditioned Iterative Methods for Linear Systems, Eigenvalue and Singular Value Problems

In the present dissertation we consider three crucial problems of numerical linear algebra: solution of a linear system, an eigenvalue, and a singular value problem. We focus on the solution methods which are iterative by their nature, matrix-free, preconditioned and require a fixed amount of computational work per iteration. In particular, this manuscript aims to contribute to the areas of res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005