Third order implicit-explicit Runge-Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection-diffusion problems with Dirichlet boundary conditions

نویسندگان

  • Haijin Wang
  • Qiang Zhang
  • Chi-Wang Shu
چکیده

To avoid the order reduction when third order implicit-explicit Runge-Kutta time discretization is used together with the local discontinuous Galerkin (LDG) spatial discretization, for solving convection-diffusion problems with time-dependent Dirichlet boundary conditions, we propose a strategy of boundary treatment at each intermediate stage in this paper. The proposed strategy can achieve optimal order of accuracy by numerical verification. Also by suitably setting numerical flux on the boundary in the LDG methods, and by establishing an important relationship between the gradient and interface jump of the numerical solution with the independent numerical solution of the gradient and the given boundary conditions, we build up the unconditional stability of the corresponding scheme, in the sense that the time step is only required to be upper bounded by a suitable positive constant, which is independent of the mesh size. keywords. local discontinuous Galerkin method, implicit-explicit time discretization, convection-diffusion equation, Dirichlet boundary condition, order reduction. AMS. 65M12, 65M15, 65M60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability and Error Estimates of Local Discontinuous Galerkin Methods with Implicit-explicit Time-marching for Convection-diffusion Problems

The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with carefully chosen implicit-explicit (IMEX) Runge-Kutta time discretization up to third order accuracy, for solving one-dimensional linear convection-diffusion equations. In the time discretization the convection term is treated explicitly and the diffusion...

متن کامل

Analysis of an Embedded Discontinuous Galerkin Method with Implicit-explicit Time-marching for Convection-diffusion Problems

In this paper, we analyze implicit-explicit (IMEX) Runge-Kutta (RK) time discretization methods for solving linear convection-diffusion equations. The diffusion operator is treated implicitly via the embedded discontinuous Galerkin (EDG) method and the convection operator explicitly via the upwinding discontinuous Galerkin method.

متن کامل

Time Discretizations for Scalar Nonlinear Convection–Diffusion Problems

This paper deals with the numerical solution of a scalar nonlinear convection–diffusion equation. The space semi–discretization is carried out by the discontinuous Galerkin finite element method. Several possibilities of the time discretizations are discussed. To obtain a stable and efficient schemes we use implicit scheme for linear terms in combination with suitable explicit scheme for nonlin...

متن کامل

Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems

The main purpose of this paper is to analyze the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with implicit-explicit (IMEX) time discretization schemes, for solving one-dimensional convectiondiffusion equations with a nonlinear convection. Both Runge-Kutta and multistep IMEX methods are considered. By the aid of the energy method, we show that the IMEX...

متن کامل

An Optimal Estimate for the Local Discontinuous Galerkin Method

L2 error estimates for the Local Discontinuous Galerkin (LDG) method have been theoretically proven for linear convection diffusion problems and periodic boundary conditions. It has been proven that when polynomials of degree k are used, the LDG method has a suboptimal order of convergence k. However, numerical experiments show that under a suitable choice of the numerical flux, higher order of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018