Homogeneous bilayer graphene film based flexible transparent conductor.
نویسندگان
چکیده
Graphene is considered as a promising candidate to replace conventional transparent conductors due to its low opacity, high carrier mobility and flexible structure. Multi-layer graphene or stacked single layer graphenes have been investigated in the past but both have their drawbacks. The uniformity of multi-layer graphene is still questionable, and single layer graphene stacks require many transfer processes to achieve sufficiently low sheet resistance. In this work, bilayer graphene film grown with low pressure chemical vapor deposition was used as a transparent conductor for the first time. The technique was demonstrated to be highly efficient in fabricating a conductive and uniform transparent conductor compared to multi-layer or single layer graphene. Four transfers of bilayer graphene yielded a transparent conducting film with a sheet resistance of 180 Ω(□) at a transmittance of 83%. In addition, bilayer graphene films transferred onto the plastic substrate showed remarkable robustness against bending, with sheet resistance change less than 15% at 2.14% strain, a 20-fold improvement over commercial indium oxide films.
منابع مشابه
Is graphene a good transparent electrode for photovoltaics and display applications?
The current standard material used for transparent electrodes in displays, touch screens and solar cells is indium tin oxide (ITO) which has low sheet resistance (10 Ω/□), high optical transmission in the visible wavelength (85%) and does not suffer of optical haze. However, ITO is mechanically rigid and incompatible with future demands for flexible applications. Graphene materials share many o...
متن کاملUltra-smooth glassy graphene thin films for flexible transparent circuits
Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantag...
متن کاملWafer scale homogeneous bilayer graphene films by chemical vapor deposition.
The discovery of electric field induced band gap opening in bilayer graphene opens a new door for making semiconducting graphene without aggressive size scaling or using expensive substrates. However, bilayer graphene samples have been limited to μm(2) size scale thus far, and synthesis of wafer scale bilayer graphene poses a tremendous challenge. Here we report homogeneous bilayer graphene fil...
متن کاملAn antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Ω sq−1)
Transparent conductors are essential in many optoelectronic devices, such as displays, smart windows, light-emitting diodes and solar cells. Here we demonstrate a transparent conductor with optical loss of ∼1.6%, that is, even lower than that of single-layer graphene (2.3%), and transmission higher than 98% over the visible wavelength range. This was possible by an optimized antireflection desi...
متن کاملGraphene-P(VDF-TrFE) multilayer film for flexible applications.
A flexible, transparent acoustic actuator and nanogenerator based on graphene/P(VDF-TrFE)/graphene multilayer film is demonstrated. P(VDF-TrFE) is used as an effective doping layer for graphene and contributes significantly to decreasing the sheet resistance of graphene to 188 ohm/sq. The potentiality of graphene/P(VDF-TrFE)/graphene multilayer film is realized in fabricating transparent, flexi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 4 2 شماره
صفحات -
تاریخ انتشار 2012