Viscosity and density decoupling method using a higher order Lamb wave sensor
نویسندگان
چکیده
Viscosity and density are two important physical parameters of liquid. Such parameters are widely used for label-free chemical detection. Conventional technologies employ acoustic wave sensors to detect viscosity and density. In these sensors, the liquid under test directly contacts with the surface of the sensor. The produced acoustic wave in the sensor leaks to the adjacent liquid layer, causing a shift in the resonance frequency of the sensor. However, such sensors are not able to separately measure the viscosity and density because these two parameters jointly affect the shift of frequency. Although some indirect methods for decoupling these two parameters have been investigated, either dual-device or simultaneous measurement of frequency and attenuation is required. In this paper, a novel AlN based acoustic wave sensor is developed for decoupling viscosity and density. Multiple higher order modes of Lamb waves are generated in this sensor and employed to interact with the adjacent liquid under test. The frequency change of two unique modes (mode C and mode D) has been found in a linear relationship with viscosity and density, respectively. With this unique feature, viscosity and density of a liquid can be distinguished by a single device, which is promising for potential industrial applications, label-free chemical detection and clinical diagnosis.
منابع مشابه
A Multi-Parameter Decoupling Method with a Lamb Wave Sensor for Improving the Selectivity of Label-Free Liquid Detection †
In this paper, a liquid multi-parameter decoupling method with only one Lamb wave sensor is presented. In a Lamb wave sensor, antisymmetric modes (A(01) mode for low frequency, A(03) mode for high frequency) and symmetric modes (S(0) mode) are used to detect multiple parameters of a liquid, such as its density, sound velocity, and viscosity. We found they can play very different roles in the de...
متن کاملApplication of Wavelet Transform as a Signal Processing Method for Defect Detection using Lamb Waves: Experimental Verification
A Lamb wave-based crack detection method for aluminum plates health monitoring is developed in this paper. Piezoelectric disks are employed to actuate and capture the Lamb wave signals. The position of crack is assumed to be aligned with the sensor and actuator. Extraction of high quality experimental results of lamb wave propagation in a plate-like structure is considerably complicated due to...
متن کاملLamb wave-based damage detection of composite shells using high-speed fiber-optic sensing
A Lamb wave-based damage identification method called damage imaging method for composite shells is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. A piezoelectric actuator is employed to generate the Lamb waves that are subsequently captured by a fiber Bragg grating ...
متن کاملElastic characterization of porous bone by ultrasonic method through Lamb waves
The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...
متن کاملSimulation of Gravity Wave Propagation in Free Surface Flows by an Incompressible SPH Algorithm
This paper presents an incompressible smoothed particle hydrodynamics (SPH) model to simulate wave propagation in a free surface flow. The Navier-Stokes equations are solved in a Lagrangian framework using a three-step fractional method. In the first step, a temporary velocity field is provided according to the relevant body forces. This velocity field is renewed in the second step to include t...
متن کامل