Shortest Paths in Triangular Grids with Neighbourhood Sequences

نویسنده

  • Benedek Nagy
چکیده

In this paper we analyse some properties of the triangular and hexagonal grids in the 2D digital space. We define distances based on neighbourhood relations that can be introduced in these grids. We present an algorithm, which calculates the distance from an arbitrary point to another one for a given neighbourhood sequence in the triangular grid. Moreover, this algorithm produces the shortest path between these points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectories and Traces on Non-traditional Regular Tessellations of the Plane

In this paper, shortest paths on two regular tessellations, on the hexagonal and on the triangular grids, are investigated. The shortest paths (built by steps to neighbor pixels) between any two points (cells, pixels) are described as traces and generalized traces on these grids, respectively. In the hexagonal grid, there is only one type of usual neighborhood and at most two directions of the ...

متن کامل

( ` , k ) - Routing on Plane Grids ∗

The packet routing problem plays an essential role in communication networks. It involves how to transfer data from some origins to some destinations within a reasonable amount of time. In the (`, k)routing problem, each node can send at most ` packets and receive at most k packets. Permutation routing is the particular case ` = k = 1. In the r-central routing problem, all nodes at distance at ...

متن کامل

Lazy Theta*: Any-Angle Path Planning and Path Length Analysis in 3D

Grids with blocked and unblocked cells are often used to represent continuous 2D and 3D environments in robotics and video games. The shortest paths formed by the edges of 8neighbor 2D grids can be up to ≈ 8% longer than the shortest paths in the continuous environment. Theta* typically finds much shorter paths than that by propagating information along graph edges (to achieve short runtimes) w...

متن کامل

Path Planning on Grids: The Effect of Vertex Placement on Path Length

Video-game designers often tessellate continuous 2dimensional terrain into a grid of blocked and unblocked square cells. The three main ways to calculate short paths on such a grid are to determine truly shortest paths, shortest vertex paths and shortest grid paths, listed here in decreasing order of computation time and increasing order of resulting path length. We show that, for both vertex a...

متن کامل

On Dynamic Identifying Codes

A walk c1, c2, . . . , cM in an undirected graph G = (V, E) is called a dynamic identifying code, if all the sets I(v) = {u ∈ C : d(u, v) ≤ 1} for v ∈ V are nonempty and no two of them are the same set. Here d(u, v) denotes the number of edges on any shortest path from u to v, and C = {c1, c2, . . . , cM}. We consider dynamic identifying codes in square grids, triangular grids, hexagonal meshes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004