ar X iv : 1 31 1 . 43 73 v 1 [ m at h - ph ] 1 8 N ov 2 01 3 Recent progress in mathematical

نویسنده

  • Michael Baake
چکیده

Diffraction methods [13] continue to provide the main tool for the structure analysis of solids. The corresponding inverse problem of determining a structure from its diffraction is difficult and, in general, does not define a structure uniquely. Kinematic diffraction, an approximation that is reasonable for X-ray diffraction where multiple scattering effects can be neglected, is well suited for a mathematical approach via measures. Measures are generalisations of the classic concept of Lebesgue measure used in volume integration and provide a natural mathematical concept to quantify the distribution of matter in space as well as the distribution of scattering intensity. This mathematical approach to diffraction was pioneered by Hof [16] and has substantially been developed since the discovery of quasicrystals required an extension of the methods used to compute the diffraction of perfectly periodic crystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 31 20 01 v 1 2 9 N ov 2 00 3 On the edge universality of the local eigenvalue statistics of matrix models

Basing on our recent results on the 1/n-expansion in unitary invariant random matrix ensembles , known as matrix models, we prove that the local eigenvalue statistic, arising in a certain neighborhood of the edges of the support of the Density of States, is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of real analytic potentials and...

متن کامل

ar X iv : 0 80 8 . 27 24 v 1 [ m at h - ph ] 2 0 A ug 2 00 8 Bosons in Rapid Rotation ∗

Some recent progress in the mathematical physics of rapidly rotating, dilute Bose gases in anharmonic traps is reviewed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013