Calycosin inhibits migration and invasion through modulation of transforming growth factor beta-mediated mesenchymal properties in U87 and U251 cells.

نویسندگان

  • Xiao-hu Nie
  • Jia Ou-yang
  • Ying Xing
  • Dan-yan Li
  • Ru-en Liu
  • Ru-xiang Xu
چکیده

In this study, we investigated the potential anticancer effects of calycosin against human glioblastoma cells, including the impacts on cell proliferation, apoptosis, and cell cycle distribution. We further studied its inhibitory activity on migration and invasion in U87 and U251 cells. Furthermore, transforming growth factor beta-mediated reductions of mesenchymal-associated genes/activators, matrix metalloproteinases-2, and -9 were detected in this process. Administration of calycosin in a glioblastoma xenograft model showed that calycosin could not only reduce tumor volume but also suppress transforming growth factor beta as well as its downstream molecules. These results revealed calycosin as a potential antitumor agent in human glioblastoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Celastrus orbiculatus extract inhibits the migration and invasion of human glioblastoma cells in vitro

BACKGROUND Gliomas are highly aggressive tumors of the nervous system, and current treatments fail to improve patient survival. To identify substances that can be used as treatments for gliomas, we examined the effect of Celastrus orbiculatus extract (COE) on the invasion and migration of human glioblastoma U87 and U251 cells in vitro. METHODS The effects of COE on cell viability and adhesion...

متن کامل

Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.

The poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor. Because it has been suggested that circulating bone marrow-derived stem cells can be recruited into solid organs in response to tissue stresses, we hypothesized that human bone marrow-derived mesenchymal stem cells (hMSC) may have a tropism for brain tumors and ...

متن کامل

Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) inhibits proliferation and invasion of glioma cells by suppressing the Wnt/β-catenin signaling pathway

BACKGROUND The dysregulation of long noncoding RNAs (lncRNAs) has been identified in a variety of cancers. An increasing number of studies have found the critical role of lncRNAs in the regulation of cellular processes, such as proliferation, invasion and differentiation. Long noncoding RNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) is a novel lncRNA that was primarily dete...

متن کامل

MicroRNA-16 suppresses epithelial-mesenchymal transition‑related gene expression in human glioma.

Glioma is one of the most prevalent types of brain tumor and is associated with the highest mortality rate of all CNS cancers. Epithelial‑mesenchymal transition (EMT) has been recognized as an important factor in tumor metastasis. Previously, it has been demonstrated that microRNA-16 (miR-16) has an important role in tumor metastasis in human cancer cell lines. However, the role of miR-16 in ep...

متن کامل

shRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines

Objective(s): Extracellular matrix (ECM) is composed of many kinds of glycoproteins containing glycosaminoglycans (GAGs) moiety. The research was conducted based on the N-Acetylgalactosamine (GalNAc) degradation of ECM components by α-N-acetylgalactosaminidase (Nagalase) which facilitates migration and invasion of cancer cells. This study aims to investigate the effects of Naga-shRNA downregula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug design, development and therapy

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016