Pii: S0377-0257(00)00160-9
نویسندگان
چکیده
A unified slip model is developed, which predicts wall slip by either a disentanglement mechanism or by debonding mechanism, depending upon the adhesive energy of the wall-polymer pair. The model is based on the transient network theory, in which the activation processes of adsorption and desorption are considered to occur at the wall in parallel to the stretching of the adsorbed chains. It is shown that the stick–slip transition occurs due to the local non-monotonic flow behavior near the wall irrespective of the mechanism of slip. The model predictions of the critical wall shear stress are in good agreement with experimentally observed values of the critical stress for various adhesive energies of wall polymer pair. Another important prediction of the model is that the temperature dependence of the critical wall shear stress for debonding is different than that of disentanglement mechanism under certain experimental conditions. This may be useful for discerning the correct mechanism of slip. The unified model encompasses different systems (viz. entangled solutions and melts) and diverse mechanisms (viz. disentanglement and debonding) in a common mathematical framework. © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Pii: S0377-0257(00)00167-1
Deformation and breakup of a viscous drop in a Bingham liquid is investigated numerically with a volume-of-fluid scheme. Initially, a spherical drop is placed between two moving parallel plates. For our parameters, the matrix liquid has yielded. The competing effects driving the motion are the shear and interfacial tension. When interfacial tension effects dominate, the drop evolves to a steady...
متن کاملPii: S0377-0257(00)00135-x
We give a compact non-technical presentation of two basic principles for reducing the description of nonequilibrium systems based on the quasi-equilibrium approximation. These two principles are: construction of invariant manifolds for the dissipative microscopic dynamics, and coarse-graining for the entropy-conserving microscopic dynamics. Two new results are presented: first, an application o...
متن کاملPii: S0377-0257(01)00185-9
The effect of viscous heating on the linear stability of torsional flow of a viscoelastic fluid is analyzed. We consider an Oldroyd-B fluid subjected to a steady shearing motion in a cone–plate system with small gap. Previous experimental and analytical results show that in the isothermal case the flow is unstable to short wavelength disturbances for values of the Deborah number greater than so...
متن کاملPii: S0377-0257(02)00013-7
The relative viscosity (μrel = suspension viscosity/suspending fluid viscosity) of low Reynolds number, dilute and surfactant-free bubble suspensions in simple shear is studied with a rotating cylinder, Couette rheometer. The conditions of the experiments correspond to capillary numbers (Ca) of order 1 and bridge previous experimental, theoretical and numerical results that focused on either Ca...
متن کاملPii: S0377-0257(02)00138-6
A computational method is presented for analyzing free surface flows of polymer solutions with the conformation tensor. It combines methods of computing Newtonian free surface flows [J. Comp. Phys. 99 (1992) 39; V.F. deAlmeida, Gas–Liquid Counterflow Through Constricted Passages, Ph.D. thesis, University of Minnesota, Minneapolis, MN, 1995 (Available from UMI, Ann Arbor, MI, order number 961516...
متن کامل