Banach’s Fixed Point Theorem for Partial Metric Spaces

نویسندگان

  • Sandra Oltra
  • Oscar Valero
چکیده

In 1994, S.G. Matthews introduced the notion of a partial metric space and obtained, among other results, a Banach contraction mapping for these spaces. Later on, S.J. O’Neill generalized Matthews’ notion of partial metric, in order to establish connections between these structures and the topological aspects of domain theory. Here, we obtain a Banach fixed point theorem for complete partial metric spaces in the sense of O’Neill. Thus, Matthews’ fixed point theorem follows as special case of our result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces

In this paper, we prove a fixed point theorem for a pair of generalized weakly contractive mappings in complete partial metric spaces. The theorems presented are generalizations of very recent fixed point theorems due to Abdeljawad, Karapinar and Tas. To emphasize the very general nature of these results, we illustrate an example.

متن کامل

Coincidence point theorem in ordered fuzzy metric spaces and its application in integral inclusions

The purpose of this paper is to present some coincidence point and common  fixed point theorems for multivalued contraction maps in complete fuzzy  metric spaces endowed with a partial order. As an application, we give  an existence theorem of solution for general classes of integral  inclusions by the coincidence point theorem.

متن کامل

$S$-metric and fixed point theorem

In this paper, we prove a general fixed point theorem in $textrm{S}$-metric spaces for maps satisfying an implicit relation on complete metric spaces. As applications, we get many analogues of fixed point theorems in metric spaces for $textrm{S}$-metric spaces.

متن کامل

A common fixed point theorem on ordered metric spaces

A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.

متن کامل

Fixed Point Theorems for Set-Valued Generalized Contractive Maps in Cone Metric Spaces

Banach’s contraction principle plays an important role in several branches of mathematics. Because of its importance for mathematical theory, it has been extended in many direction. Especially, Nadler [23] gave a generalization of Banach’s contraction principle to the case of set-valued maps in metric spaces. The author [13] obtained a generalization of Nadler’s fixed point theorem. They proved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008