Crystal structure across the β to α phase transition in thermoelectric Cu2−xSe
نویسندگان
چکیده
The crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu2-x Se is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu2-x Se is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se-Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to the transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group-subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.
منابع مشابه
Na-Doping Effects on Thermoelectric Properties of Cu2-xSe Nanoplates
For this work, a β-phase Cu2−xSe nanowire and nanoplate, and a Na-doped Cu2−xSe nanoplate were successfully synthesized using solution syntheses. The morphologies of the Cu2−xSe nanowire and nanoplate could be easily controlled by changing the synthetic condition. The Na-doped Cu2−xSe nanoplate was prepared by a simple treatment of the Cu2−xSe nanoplate with a sodium hydroxide-ethylene glycol s...
متن کاملSuperior intrinsic thermoelectric performance with zT of 1.8 in single-crystal and melt-quenched highly dense Cu2-xSe bulks
Practical applications of the high temperature thermoelectric materials developed so far are partially obstructed by the costly and complicated fabrication process. In this work, we put forward two additional important properties for thermoelectric materials, high crystal symmetry and congruent melting. We propose that the recently discovered thermoelectric material Cu2-xSe, with figure of meri...
متن کاملThermoelectric properties of copper chalcogenide alloys deposited via the solution-phase using a thiol–amine solvent mixture
There has been a growing interest in solution-phase routes to thermoelectric materials due to the decreased costs and novel device architectures that these methods enable. Many excellent thermoelectric materials are metal chalcogenide semiconductors and the ability to create soluble metal chalcogenide semiconductor precursors using thiol–amine solvent mixtures was recently demonstrated by other...
متن کاملAqueous preparation of surfactant-free copper selenide nanowires.
Uniform surfactant-free copper selenide (Cu2-xSe) nanowires were prepared via an aqueous route. The effects of reaction parameters such as Cu/Se precursor ratio, Se/NaOH ratio, and reaction time on the formation of nanowires were comprehensively investigated. The results show that Cu2-xSe nanowires were formed through the assembling of CuSe nanoplates, accompanied by their self-redox reactions....
متن کاملEnhanced Thermoelectric Properties of Cu3SbSe3-Based Composites with Inclusion Phases
Cu3SbSe3-based composites have been prepared by self-propagating high-temperature synthesis (SHS) combined with spark plasma sintering (SPS) technology. Phase composition and microstructure analysis indicate that the obtained samples are mainly composed of Cu3SbSe3 phase and CuSbSe2/Cu2–xSe secondary phases. Our results show that the existence of Cu2–xSe phase can clearly enhance the electrical...
متن کامل