Multiple Sequence Alignment Using SAGA: Investigating the Effects of Operator Scheduling, Population Seeding, and Crossover Operators

نویسندگان

  • René Thomsen
  • Wouter Boomsma
چکیده

Multiple sequence alignment (MSA) is a fundamental problem of great importance in molecular biology. In this study, we investigated several aspects of SAGA, a well-known evolutionary algorithm (EA) for solving MSA problems. The SAGA algorithm is important because it represents a successful attempt at applying EAs to MSA and since it is the first EA to use operator scheduling on this problem. However, it is largely undocumented which elements of SAGA are vital to its performance. An important finding in this study is that operator scheduling does not improve the performance of SAGA compared to a uniform selection of operators. Furthermore, the experiments show that seeding SAGA with a ClustalW-derived alignment allows the algorithm to discover alignments of higher quality compared to the traditional initialization scheme with randomly generated alignments. Finally, the experimental results indicate that SAGA’s performance is largely unaffected when the crossover operators are disabled. Thus, the major determinant of SAGA’s success seems to be the mutation operators and the scoring functions used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved Algorithm for Multiple Sequence Alignment of Protein Sequences Using Genetic Algorithm

One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly c...

متن کامل

SAGA: sequence alignment by genetic algorithm.

We describe a new approach to multiple sequence alignment using genetic algorithms and an associated software package called SAGA. The method involves evolving a population of alignments in a quasi evolutionary manner and gradually improving the fitness of the population as measured by an objective function which measures multiple alignment quality. SAGA uses an automatic scheduling scheme to c...

متن کامل

An enhanced algorithm for multiple sequence alignment of protein sequences using genetic algorithm.

One of the most fundamental operations in biological sequence analysis is multiple sequence alignment (MSA). The basic of multiple sequence alignment problems is to determine the most biologically plausible alignments of protein or DNA sequences. In this paper, an alignment method using genetic algorithm for multiple sequence alignment has been proposed. Two different genetic operators mainly c...

متن کامل

Genetic Algorithm Based Approach for Obtaining Alignment of Multiple Sequences

This paper presents genetic algorithm based solution for determing alignment of multiple molecular sequences. Two datasets from DNA families Canis_familiaris and galaxy dataset have been considered for experimental work & analysis. Genetic operators like cross over rate, mutation rate can be defined by the user. Experiments & observations were recorded w.r.t variable parameters like fixed popul...

متن کامل

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004