PGC-1α dictates endothelial function through regulation of eNOS expression

نویسندگان

  • Siobhan M. Craige
  • Swenja Kröller-Schön
  • Chunying Li
  • Shashi Kant
  • Shenghe Cai
  • Kai Chen
  • Mayur M. Contractor
  • Yongmei Pei
  • Eberhard Schulz
  • John F. Keaney
چکیده

Endothelial dysfunction is a characteristic of many vascular related diseases such as hypertension. Peroxisome proliferator activated receptor gamma, coactivator 1α (PGC-1α) is a unique stress sensor that largely acts to promote adaptive responses. Therefore, we sought to define the role of endothelial PGC-1α in vascular function using mice with endothelial specific loss of function (PGC-1α EC KO) and endothelial specific gain of function (PGC-1α EC TG). Here we report that endothelial PGC-1α is suppressed in angiotensin-II (ATII)-induced hypertension. Deletion of endothelial PGC-1α sensitized mice to endothelial dysfunction and hypertension in response to ATII, whereas PGC-1α EC TG mice were protected. Mechanistically, PGC-1α promotes eNOS expression and activity, which is necessary for protection from ATII-induced dysfunction as mice either treated with an eNOS inhibitor (LNAME) or lacking eNOS were no longer responsive to transgenic endothelial PGC-1α expression. Finally, we determined that the orphan nuclear receptor, estrogen related receptor α (ERRα) is required to coordinate the PGC-1α -induced eNOS expression. In conclusion, endothelial PGC-1α expression protects from vascular dysfunction by promoting NO• bioactivity through ERRα induced expression of eNOS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice

Increasing evidences have accumulated that endothelial dysfunction is involved in the pathogenesis of hypertension. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) has been identified as an essential factor that protects against endothelial dysfunction in vascular pathologies. However, the functional role of PGC-1α in hypertension is not well understood. Using an ad...

متن کامل

Correction: Adenosine Prevents TNFα-Induced Decrease in Endothelial Mitochondrial Mass via Activation of eNOS-PGC-1α Regulatory Axis

We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mito...

متن کامل

Effects of 4 week endurance training on PGC-1α expression in adipose tissue, ANGPTL8 serum concentrations and beta cells function of STZ diabetic rats

Background & Objective: Angiopoietin-like Proteins 8 (ANGPTL8) which secreted form adipose tissue due to downstream PGC-1α pathways, is the main factor for regeneration of beta cell. The aim of this study was to investigate the effect of 4 endurance training program on PGC-1α expression in adipose tissue, ANGPTL8 serum concentration and beta cell function (HOMA.B) in diabetic rats. Materials & ...

متن کامل

The Effect of Moderate and High Intensity Resistance Training on the Expression of PGC-1α, TFAM and AMPK of Cardiomyocytes in Elderly Rats

Background & objectives: Age-related cardiovascular dysfunction is often accompanied by impaired mitochondrial biogenesis and function. Exercise training can improve mitochondrial function and content in muscle to meet the energy demands of the cells. The purpose of the present study was to investigate the effect of moderate-intensity (MRT) and high-intensity (HRT) resistance training on the ex...

متن کامل

Therapeutic Effects of Fenofibrate on Diabetic Peripheral Neuropathy by Improving Endothelial and Neural Survival in db/db Mice

Neural vascular insufficiency plays an important role in diabetic peripheral neuropathy (DPN). Peroxisome proliferative-activated receptor (PPAR)α has an endothelial protective effect related to activation of PPARγ coactivator (PGC)-1α and vascular endothelial growth factor (VEGF), but its role in DPN is unknown. We investigated whether fenofibrate would improve DPN associated with endothelial ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016