The gas phase reaction of singlet dioxygen with water: a water-catalyzed mechanism.

نویسندگان

  • Xin Xu
  • Richard P Muller
  • William A Goddard
چکیده

Stimulated by the recent surprising results from Wentworth et al. [Wentworth, A. D., Jones, L. H., Wentworth, P., Janda, K. D. & Lerner, R. A. (2000) Proc. Natl. Acad. Sci. USA 97, 10930-10935] that Abs efficiently catalyze the conversion of molecular singlet oxygen ((1)O(2)) plus water to hydrogen peroxide (HOOH), we used quantum chemical methods (B3LYP density functional theory) to delineate the most plausible mechanisms for the observed efficient conversion of water to HOOH. We find two reasonable pathways. In Pathway I, (i) H(2)O catalyzes the reaction of (1)O(2) with a second water to form HOOOH; (ii) two HOOOH form a dimer, which rearranges to form the HOO-HOOO + H(2)O complex; (iii) HOO-HOOO rearranges to HOOH-OOO, which subsequently reacts with H(2)O to form H(2)O(4) + HOOH; and (iv) H(2)O(4) rearranges to the cyclic dimer (HO(2))(2), which in turn forms HOOH plus (1)O(2) or (3)O(2). Pathway II differs in that step ii is replaced with the reaction between HOOOH and (1)O(2), leading to the formation of HOO-HOOO. This then proceeds to similar products. For a system with (18)O H(2)O, Pathway I leads to a 2.2:1 ratio of (16)O:(18)O in the product HOOH, whereas Pathway II leads to 3:1. These ratios are in good agreement with the 2.2:1 ratio observed in isotope experiments by Wentworth et al. These mechanisms lead to two HOOH per initial (1)O(2) or one, depending on whether the product of step iv is (1)O(2) or (3)O(2), in good agreement with the experimental result of 2.0. In addition to the Ab-induced reactions, the hydrogen polyoxides (H(2)O(3) and H(2)O(4)) formed in these mechanisms and their decomposition product polyoxide radicals (HO(2), HO(3)) may play a role in combustion, explosions, atmospheric chemistry, and the radiation chemistry in aqueous systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Properties of Gold(I) Compounds Relevance to Chemical Reactions

The chemical reactivity of Au(I)compounds is related to their HOMO-LUMO energy separation. For coordinately unsaturated complexes of Au(I), the excited state (HOMO-LU_MO separation) is only about 2 eV above the ground state. Many Au(I)complexes such as [Au(TPPTS)3]8-and [Au(TPA)3] show visible luminescence from this state even in water solution. Quenching of the phosphorescence relates to the r...

متن کامل

Water oxidation catalyzed by a dinuclear Mn complex: a functional model for the oxygen-evolving center of photosystem II.

A dimanganese(II) bis-aquo complex [Mn2(cmep)2(H2O)2](ClO4)2, (cmep = N-carboxymethylN’-methyl-N,N’-bis(2-pyridylmethyl)-1,2-ethandiamine), catalyzes the oxidation of water by butylhydrogenperoxide (TBHP) to dioxygen with many turnovers and without degradation. O isotope labelling shows the reaction is highly specific: One oxygen atom in the product dioxygen is derived from water, the other is ...

متن کامل

Dynamic Model For Production of Biohydrogen Via Water- Gas Shift Reaction (RESEARCH NOTE)

In design of anaerobic bioreactor, rate equation is commonly used. Mathematical model was developed at steady state condition, to project concentration of gaseous substrate and product in biological oxidation of carbon monoxide with water to produce hydrogen and carbon dioxide. The concept of bioconversion was based on transport of CO from gas phase to liquid phase, as the CO consumption was in...

متن کامل

Production of Hydrogen and Synthesis gas via Cu-Ni/Al2O3 catalyzed gasification of bagasse in supercritical water media

Bagasse as a real biomass was converted to hydrogen rich gas via catalytic supercritical water gasification process. To find the effect of Cu on selectivity of products, Cu promoted Ni-γAl2O3 catalysts were prepared with 1 to 20wt% Ni and 0.5 to 10wt% Cu loadings via impregnation method. Catalysts were characterized by ICP, BET, XRD, H2 chemisorption and TEM technique as well CHNS analysis was ...

متن کامل

Probing the antibody-catalyzed water-oxidation pathway at atomic resolution.

Antibodies can catalyze the generation of hydrogen peroxide (H2O2) from singlet dioxygen (1O2*) and water via the postulated intermediacy of dihydrogen trioxide (H2O3) and other trioxygen species. Nine different crystal structures were determined to elucidate the chemical consequences to the antibody molecule itself of exposure to such reactive intermediates and to provide insights into the loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 6  شماره 

صفحات  -

تاریخ انتشار 2002