Numerically simulated exposure of children and adults to pulsed gradient fields in MRI.
نویسندگان
چکیده
PURPOSE To determine exposure to gradient switching fields of adults and children in a magnetic resonance imaging (MRI) scanner by evaluating internal electric fields within realistic models of adult male, adult female, and child inside transverse and longitudinal gradient coils, and to compare these results with compliance guidelines. MATERIALS AND METHODS Patients inside x-, y-, and z-gradient coils were simulated using anatomically realistic models of adult male, adult female, and child. The induced electric fields were computed for 1 kHz sinusoidal current with a magnitude of 1 A in the gradient coils. Rheobase electric fields were then calculated and compared to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2004 and International Electrotechnical Commission (IEC) 2010 guidelines. The effect of the human body, coil type, and skin conductivity on the induced electric field was also investigated. RESULTS The internal electric fields are within the first level controlled operating mode of the guidelines and range from 2.7V m-1 to 4.5V m-1 , except for the adult male inside the y-gradient coil (induced field reaches 5.4V m-1 ).The induced electric field is sensitive to the coil type (electric field in the skin of adult male: 4V m-1 , 4.6V m-1 , and 3.8V m-1 for x-, y-, and z-gradient coils, respectively), the human body model (electric field in the skin inside y-gradient coil: 4.6V m-1 , 4.2V m-1 , and 3V m-1 for adult male, adult female, and child, respectively), and the skin conductivity (electric field 2.35-4.29% higher for 0.1S m-1 skin conductivity compared to 0.2S m-1 ). CONCLUSION The y-gradient coil induced the largest fields in the patients. The highest levels of internal electric fields occurred for the adult male model. J. Magn. Reson. Imaging 2016;44:1360-1367.
منابع مشابه
Does Exposure to Static Magnetic Fields Generated by Magnetic Resonance Imaging Scanners Raise Safety Problems for Personnel?
MRI workers are occupationally exposed to static and time-varying gradient magnetic fields. While the 24-hour time-averaged exposure to static magnetic fields is about a few mT, the maximum static field strength can be as high as 500 mT during patient setup. Over the past several years, our laboratory has performed extensive experiments on the health effects of exposure of animal models and h...
متن کاملDesign and Fabrication of Helmholtz Coils to Study the Effects of Pulsed Electromagnetic Fields on the Healing Process in Periodontitis: Preliminary Animal Results
Background: Effects of electromagnetic fields on healing have been investigated for centuries. Substantial data indicates that exposure to electromagnetic field can lead to enhanced healing in both soft and hard tissues. Helmholtz coil is a device that generates pulsed electromagnetic fields. Objective: In this study, a pair of Helmholtz coils for enhancing thehealing process in periodontitis w...
متن کاملبررسی میزان مواجهه شغلی با میدان های مغناطیسی پایا واثرات بهداشتی آن در مراکز تصویر برداری تشدید مغناطیسی
Background and aim: Magnetic resonance imaging as one of the best medical scanning technique is considered to be the most important sources of static magnetic fields. The staffs of MRI ´s units frequently exposed to these static magnetic fields. This study aims to determine the occupational exposure level to mentioned field and its related health effects in MRI´s units. Methods: The occup...
متن کاملThe discrepancy between human peripheral nerve chronaxie times as measured using magnetic and electric field stimuli: the relevance to MRI gradient coil safety
Peripheral nerve stimulation (PNS) resulting from electric fields induced from the rapidly changing magnetic fields of gradient coils is a concern in MRI. Nerves exposed to either electric fields or changing magnetic fields would be expected to display consistent threshold characteristics, motivating the direct application of electric field exposure criteria from the literature to guide the dev...
متن کاملScrutiny of brain signals variations in regions Cz, C3 and C4 under Local Exposure of Extremely Low Frequency and Weak pulsed Magnetic Field to promote Neurofeedback systems
Introduction: Researchers have long been interested in the effects of low intensity (less than 500 microtesla) and Extremely Low Frequency Magnetic Fields (ELF-MF, less than 300 Hz) on human’s brain activity. In this study, our purpose was to analyze the effect of local magnetic field pulses around brain regions Cz, C3, C4 on human electroencephalogram (EEG) and induction of resonance effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetic resonance imaging : JMRI
دوره 44 5 شماره
صفحات -
تاریخ انتشار 2016