Links: A High-Dimensional Online Clustering Method
نویسندگان
چکیده
We present a novel algorithm, called Links, designed to perform online clustering on unit vectors in a high-dimensional Euclidean space. The algorithm is appropriate when it is necessary to cluster data efficiently as it streams in, and is to be contrasted with traditional batch clustering algorithms that have access to all data at once. For example, Links has been successfully applied to embedding vectors generated from face images or voice recordings for the purpose of recognizing people, thereby providing real-time identification during video or audio capture.
منابع مشابه
High-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملBotOnus: an online unsupervised method for Botnet detection
Botnets are recognized as one of the most dangerous threats to the Internet infrastructure. They are used for malicious activities such as launching distributed denial of service attacks, sending spam, and leaking personal information. Existing botnet detection methods produce a number of good ideas, but they are far from complete yet, since most of them cannot detect botnets in an early stage ...
متن کاملAn Adaptive Grid-based Method for Clustering Multi- Dimensional Online Data Streams
Clustering is an important task in mining the evolving data streams. A lot of data streams are high dimensional in nature. Clustering in the high dimensional data space is a complex problem, which is inherently more complex for data streams. Most data stream clustering methods are not capable of dealing with high dimensional data streams; therefore they sacrifice the accuracy of clusters. In or...
متن کاملRelation Strength-Aware Clustering of Heterogeneous Information Networks with Incomplete Attributes
With the rapid development of online social media, online shopping sites and cyber-physical systems, heterogeneous information networks have become increasingly popular and content-rich over time. In many cases, such networks contain multiple types of objects and links, as well as different kinds of attributes. The clustering of these objects can provide useful insights in many applications. Ho...
متن کاملیک روش مبتنی بر خوشهبندی سلسلهمراتبی تقسیمکننده جهت شاخصگذاری اطلاعات تصویری
It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.10123 شماره
صفحات -
تاریخ انتشار 2018