Title of Document : UNCERTAINTY ASSOCIATED WITH TRAVEL TIME PREDICTION : ADVANCED VOLATILITY APPROACHES AND ENSEMBLE METHODS

نویسنده

  • Yanru Zhang
چکیده

Title of Document: UNCERTAINTY ASSOCIATED WITH TRAVEL TIME PREDICTION: ADVANCED VOLATILITY APPROACHES AND ENSEMBLE METHODS YANRU ZHANG, PH.D, 2015 Directed By: ALI HAGHANI,PROFESSOR DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING Travel time effectively measures freeway traffic conditions. Easy access to this information provides the potential to alleviate traffic congestion and to increase the reliability in road networks. Accurate travel time information through Advanced Traveler Information Systems (ATIS) can provide guidance for travelers’ decisions on departure time, route, and mode choice, and reduce travelers’ stress and anxiety. In addition, travel time information can be used to present the current or future traffic state in a network and provide assistance for transportation agencies in proactively developing Advanced Traffic Management System (ATMS) strategies. Despite its importance, it is still a challenging task to model and estimate travel time, as traffic often has irregular fluctuations. These fluctuations result from the interactions among different vehicle-driver combinations and exogenous factors such as traffic incidents, weather, demand, and roadway conditions. Travel time is especially sensitive to the exogenous factors when operating at or near the roadway’s capacity, where congestion occurs. Small changes in traffic demand or the occurrence of an incident can greatly affect the travel time. As it is impossible to take into consideration every impact of these unpredictable exogenous factors in the modeling process, travel time prediction problem is often associated with uncertainty. This research uses innovative data mining approaches such as advanced statistical and machine learning algorithms to study uncertainty associated with travel time prediction. The final objective of this research is to develop more accurate and reliable travel time prediction models. UNCERTAINTY ASSOCIATED WITH TRAVEL TIME PREDICTION: ADVANCED VOLATILITY APPROACHES AND ENSEMBLE METHODS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Toward robust early-warning models: A horse race, ensembles and model uncertainty

This paper presents first steps toward robust models for crisis prediction. We conduct a horse race of conventional statistical methods and more recent machine learning methods as early-warning models. As individual models are in the literature most often built in isolation of other methods, the exercise is of high relevance for assessing the relative performance of a wide variety of methods. F...

متن کامل

Skill forecasting from different wind power ensemble prediction methods

This paper presents an investigation on alternative approaches to the providing of uncertainty estimates associated to point predictions of wind generation. Focus is given to skill forecasts in the form of prediction risk indices, aiming at giving a comprehensive signal on the expected level of forecast uncertainty. Ensemble predictions of wind generation are used as input. A proposal for the d...

متن کامل

Firm Bankruptcy Prediction: A Bayesian Model Averaging Approach

I develop a new predictive approach using Bayesian model averaging to account for incomplete knowledge of the true model behind corporate bankruptcy. I find that uncertainty over the correct model is empirically large, with far fewer variables significant predictors of bankruptcy compared to conventional approaches. Only the ratio of total liabilities to total assets and the volatility of marke...

متن کامل

Accurate Uncertainty Propagation through Nonlinear Systems

Introduction: Mathematical models are approximate representations of physical processes and consequently have uncertainties associated with them. Furthermore, no sensor is perfect. Sensor measurements are generally some linear/nonlinear combination of states and are usually corrupted with quantization errors, superimposed noise, etc. Propagating the states of a process using an uncertain model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015