An Accelerated Communication-Efficient Primal-Dual Optimization Framework for Structured Machine Learning
نویسندگان
چکیده
Distributed optimization algorithms are essential for training machine learning models on very large-scale datasets. However, they often suffer from communication bottlenecks. Confronting this issue, a communication-efficient primal-dual coordinate ascent framework (CoCoA) and its improved variant CoCoA+ have been proposed, achieving a convergence rate of $\mathcal{O}(1/t)$ for solving empirical risk minimization problems with Lipschitz continuous losses. In this paper, an accelerated variant of CoCoA+ is proposed and shown to possess a convergence rate of $\mathcal{O}(1/t^2)$ in terms of reducing suboptimality. The analysis of this rate is also notable in that the convergence rate bounds involve constants that, except in extreme cases, are significantly reduced compared to those previously provided for CoCoA+. The results of numerical experiments are provided to show that acceleration can lead to significant performance gains.
منابع مشابه
Adding vs. Averaging in Distributed Primal-Dual Optimization
Distributed optimization methods for large-scale machine learning suffer from a communication bottleneck. It is difficult to reduce this bottleneck while still efficiently and accurately aggregating partial work from different machines. In this paper, we present a novel generalization of the recent communication-efficient primal-dual framework (COCOA) for distributed optimization. Our framework...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملCommunication-Efficient Distributed Dual Coordinate Ascent
Communication remains the most significant bottleneck in the performance of distributed optimization algorithms for large-scale machine learning. In this paper, we propose a communication-efficient framework, COCOA, that uses local computation in a primal-dual setting to dramatically reduce the amount of necessary communication. We provide a strong convergence rate analysis for this class of al...
متن کاملEfficient Training of Graph-Regularized Multitask SVMs
We present an optimization framework for graph-regularized multi-task SVMs based on the primal formulation of the problem. Previous approaches employ a so-called multi-task kernel (MTK) and thus are inapplicable when the numbers of training examples n is large (typically n < 20, 000, even for just a few tasks). In this paper, we present a primal optimization criterion, allowing for general loss...
متن کاملAccelerated Primal-Dual Policy Optimization for Safe Reinforcement Learning
Constrained Markov Decision Process (CMDP) is a natural framework for reinforcement learning tasks with safety constraints, where agents learn a policy that maximizes the long-term reward while satisfying the constraints on the long-term cost. A canonical approach for solving CMDPs is the primal-dual method which updates parameters in primal and dual spaces in turn. Existing methods for CMDPs o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.05305 شماره
صفحات -
تاریخ انتشار 2017