Totally nonnegative cells and matrix Poisson varieties

نویسندگان

  • K. R. Goodearl
  • S. Launois
  • T. H. Lenagan
چکیده

We describe explicitly the admissible families of minors for the totally nonnegative cells of real matrices, that is, the families of minors that produce nonempty cells in the cell decompositions of spaces of totally nonnegative matrices introduced by A. Postnikov. In order to do this, we relate the totally nonnegative cells to torus orbits of symplectic leaves of the Poisson varieties of complex matrices. In particular, we describe the minors that vanish on a torus orbit of symplectic leaves, we prove that such families of minors are exactly the admissible families, and we show that the nonempty totally nonnegative cells are the intersections of the torus orbits of symplectic leaves with the spaces of totally nonnegative matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From totally nonnegative matrices to quantum matrices and back, via Poisson geometry

In this survey article, we describe recent work that connects three separate objects of interest: totally nonnegative matrices; quantum matrices; and matrix Poisson varieties. Mathematics Subject Classification 2000: 14M15, 15A48, 16S38, 16W35, 17B37, 17B63, 20G42, 53D17

متن کامل

Efficient Recognition of Totally Nonnegative Matrix Cells

The space of m × p totally nonnegative real matrices has a stratification into totally nonnegative cells. The largest such cell is the space of totally positive matrices. There is a well-known criterion due to Gasca and Peña for testing a real matrix for total positivity. This criterion involves testing mp minors. In contrast, there is no known small set of minors for testing for total nonnegat...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

On the construction of symmetric nonnegative matrix with prescribed Ritz values

In this paper for a given prescribed Ritz values that satisfy in the some special conditions, we find a symmetric nonnegative matrix, such that the given set be its Ritz values.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010