New nontoxic double information magnetic and fluorescent MRI agent.
نویسندگان
چکیده
Liquid Crystals Laboratory, Institute of Science and Technology, Lithuanian University of Educational Sciences, Lithuania Today sensitivity of the MRI is not enough compared to the nuclear methods, such as positron emission tomography and single photon emission computed tomography. Challenging its extension to the nanometre scale could provide a powerful new tool for the nanosciences and nanomedicine. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. In this regard, we perform embodiment of nanodiamonds in dendrimer matrix as additional fluorescent optical and magnetic (together with Gd (III)) imaging modalities of the MRI. New hybrid system composed of dendrimer-gadolinium Gd (III) nanodiamond as a new contrast agent for MRI was studied. Poly(propilene-imine) PPI and poly(amidoamine) PAMAM dendrimers with fixed size of nanocavities will be used as host material to protect organism against the toxicity and also to increase relaxivity of contrast agent (resulting in the increases MRI resolution). Nanodiamond as biocompatible platform to functionalize the contrast agent will be used. This bimodal hybrid system enables to use smaller amount of the contrast agent and could permit the decrease of the lateral toxicity. This bimodal hybrid system as MRI agent is providing double information (magnetic and fluorescent) about the damaged cell.
منابع مشابه
A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملHyperbranched polyglycerols as trimodal imaging agents: design, biocompatibility, and tumor uptake.
Combining various imaging modalities often leads to complementary information and synergistic advantages. A trimodal long-circulating imaging agent tagged with radioactive, magnetic resonance, and fluorescence markers is able to combine the high sensitivity of SPECT with the high resolution of MRI over hours and days. The fluorescence marker helps to confirm the in vivo imaging information at t...
متن کاملUse of Magnetic Resonance Imaging in Food Quality Control: A Review
Modern challenges of food science require a new understanding of the determinants of food quality and safety. Application of advanced imaging modalities such as magnetic resonance imaging (MRI) has seen impressive successes and fast growth over the past decade. Since MRI does not have any harmful ionizing radiation, it can be considered as a magnificent tool for the quality control of food prod...
متن کاملA New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).
Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity. Materials ...
متن کاملSimultaneous diagnosis and drug delivery by silymarin-loaded magnetic nanoparticles
Objective(s): The aim of this work was to prepare and characterize magnetic nanoparticles (MNPs) as theranostic system to act simultaneously as drug carrier and MRI contrast agent. Chitosan-coated MNPs (CMNPs) were prepared and loaded with silymarin. Silymarin-loaded CMNPs were characterized with various techniques and their potential as MRI contrast agent was also evaluated. Materials and Meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EJNMMI physics
دوره 2 Suppl 1 شماره
صفحات -
تاریخ انتشار 2015