A Spiking Neural Network for Financial Prediction
نویسندگان
چکیده
In this paper a Polychronous Spiking Network was applied to financial time series prediction with the aim of exploiting the inherent temporal capabilities of the spiking neural model. The performance of this network was benchmarked against two “traditional”, rate-encoded, neural networks; a Multi-Layer Perceptron network and a Functional Link Neural Network. Three non-stationary datasets were used to test these simulations: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the spiking neural network in terms of Annualised Return, for both 1-Step and 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown, Signal-To-Noise ratio, and Normalised Mean Square Error. The results suggest that the inherent temporal characteristics of the polychronous spiking network make it a more suited architecture than traditional neural networks for use in non-stationary financial data prediction environments.
منابع مشابه
Financial Time Series Prediction Using Spiking Neural Networks
In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-en...
متن کاملInvestigating Financial Crisis Prediction Power using Neural Network and Non-Linear Genetic Algorithm
Bankruptcy is an event with strong impacts on management, shareholders, employees, creditors, customers and other stakeholders, so as bankruptcy challenges the country both socially and economically. Therefore, correct prediction of bankruptcy is of high importance in the financial world. This research intends to investigate financial crisis prediction power using models based on Neural Network...
متن کاملEnhancing Efficiency of Neural Network Model in Prediction of Firms Financial Crisis Using Input Space Dimension Reduction Techniques
The main focus in this study is on data pre-processing, reduction in number of inputs or input space size reduction the purpose of which is the justified generalization of data set in smaller dimensions without losing the most significant data. In case the input space is large, the most important input variables can be identified from which insignificant variables are eliminated, or a variable ...
متن کاملArtificial Neural Network Model for Predicting Insurance Insolvency
In addition to its primary role of providing financial protection for other industries the insurance industry also serves as a medium for fund mobilization. In spite of the harsh economic environment in Nigeria, the insurance industry has been crucial to the consummation of business plans and wealth creation. However, the continued downturn experienced by many countries, in the last decade, se...
متن کاملA Neural-Network Approach to the Modeling of the Impact of Market Volatility on Investment
In recent years, authors have focused on modeling and forecasting volatility in financial series it is crucial for the characterization of markets, portfolio optimization and asset valuation. One of the most used methods to forecast market volatility is the linear regression. Nonetheless, the errors in prediction using this approach are often quite high. Hence, continued research is conducted t...
متن کامل