Learning Classifier System with Self-adaptive Discovery Mechanism
نویسندگان
چکیده
Learning Classifier System which replaces the genetic algorithm with the evolving cooperative population of discoverers is a focus of current research. This paper presents a modified version of XCS classifier system with self-adaptive discovery module. The new model was confirmed experimentally in a multiplexer environment. The results prove that XCS with the self-adaptive method for determining mutation rate had a better performance than the classic architecture with fixed mutation.
منابع مشابه
The Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملA Molecular Approach to Complex Adaptive Systems
Complex Adaptive Systems (CAS) are dynamical networks of interacting agents which as a whole determine the behavior, adaptivity and cognitive ability of the system. CAS are ubiquitous and occur in a variety of natural and artificial systems (e.g., cells, societies, stock markets). To study CAS, Holland [1], [2] proposed to employ an agent-based system in which Learning Classifier Systems (LCS) ...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملAlternatives for Classifier System Credit Assignment
Classifier systems are production rule systems that automatically generate populations of rules cooperating to accomplish desired tasks. The genetic algorithm is the systems' discovery mechanism, and its effectiveness is dependent in part on the accurate estimation of the relative merit of each of the rules (classifiers) in the current population. Merit is estimated conventionally by use of the...
متن کامل