Asymptotic Behavior of Solutions to Quasilinear Hyperbolic Equations with Nonlinear Damping
نویسنده
چکیده
منابع مشابه
Asymptotic behaviour of solutions of semilinear hyperbolic systems in arbitrary domains
In this paper the long time asymptotic behavior of solutions of semilinear symmetric hyperbolic system including Maxwell s equations and the scalar wave equation in an ar bitraty domain are investigated The possibly nonlinear damping term may vanish on a certain subset of the domain It is shown that the solution decays weakly to zero if and only if the initial state is orthogonal to all station...
متن کاملGlobal attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملAsymptotic behavior of global classical solutions to the mixed initial-boundary value problem for quasilinear hyperbolic systems with small BV data
In this paper, we investigate the asymptotic behavior of global classical solutions to the mixed initial-boundary value problem with small BV data for linearly degenerate quasilinear hyperbolic systems with general nonlinear boundary conditions in the half space {(t, x)|t ≥ 0, x ≥ 0}. Based on the existence result on the global classical solution, we prove that when t tends to the infinity, the...
متن کاملUniform Decay Rates of Solutions to a Structural Acoustics Model with Nonlinear Dissipation
In this work, the asymptotic behavior of solutions to a coupled hyperbolic/parabolic{like system is investigated. It is shown that with both components of the equation being subjected to nonlinear damping (boundary damping for the wave component, interior for the beam), a global uniform stability is attained for all (weak) solutions.
متن کاملA Numerical Comparison Between Degenerate Parabolic and Quasilinear Hyperbolic Models of Cell Movements Under Chemotaxis
We consider two models which were both designed to describe the movement of eukaryotic cells responding to chemical signals. Besides a common standard parabolic equation for the diffusion of a chemoattractant, like chemokines or growth factors, the two models differ for the equations describing the movement of cells. The first model is based on a quasilinear hyperbolic system with damping, the ...
متن کامل