Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands.

نویسندگان

  • Chao Wang
  • Xiaobo Wang
  • Dongwei Liu
  • Honghui Wu
  • Xiaotao Lü
  • Yunting Fang
  • Weixin Cheng
  • Wentao Luo
  • Ping Jiang
  • Jason Shi
  • Huaqun Yin
  • Jizhong Zhou
  • Xingguo Han
  • Edith Bai
چکیده

Higher aridity and more extreme rainfall events in drylands are predicted due to climate change. Yet, it is unclear how changing precipitation regimes may affect nitrogen (N) cycling, especially in areas with extremely high aridity. Here we investigate soil N isotopic values (δ(15)N) along a 3,200 km aridity gradient and reveal a hump-shaped relationship between soil δ(15)N and aridity index (AI) with a threshold at AI=0.32. Variations of foliar δ(15)N, the abundance of nitrification and denitrification genes, and metabolic quotient along the gradient provide further evidence for the existence of this threshold. Data support the hypothesis that the increase of gaseous N loss is higher than the increase of net plant N accumulation with increasing AI below AI=0.32, while the opposite is favoured above this threshold. Our results highlight the importance of N-cycling microbes in extremely dry areas and suggest different controlling factors of N-cycling on either side of the threshold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A tool for estimating impacts of woody encroachment in arid grasslands: Allometric equations for biomass, carbon and nitrogen content in Prosopis velutina

Regression equations were developed to estimate above ground biomass and carbon and nitrogen mass of foliage and stem size fractions from plant size dimensions (basal diameter, canopy area, height, canopy volume) for a tall shrub species (Prosopis velutina) that has increased in abundance in arid and semi-arid grasslands in the southwestern United States and northwestern Mexico. Regression equa...

متن کامل

The Effects of Warming-Shifted Plant Phenology on Ecosystem Carbon Exchange Are Regulated by Precipitation in a Semi-Arid Grassland

BACKGROUND The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems. METHODOLOGY/PRINCIPAL FINDINGS A 4-year field experiment with day and night warming was conducted to examine ...

متن کامل

Variation in the Stable Carbon and Nitrogen Isotope Composition of Plants and Soil along a Precipitation Gradient in Northern China

Water availability is the most influential factor affecting plant carbon (δ(13)C) and nitrogen (δ(15)N) isotope composition in arid and semi-arid environments. However, there are potential differences among locations and/or species in the sensitivity of plant δ(13)C and δ(15)N to variation in precipitation, which are important for using stable isotope signatures to extract paleo-vegetation and ...

متن کامل

Nitrogen and Phosphorous Loss as Affected by Plough Direction in Rainfed Wheat Land of a Semi- Arid Region

Sloping farmlands are the major sources of soil, water and nutrient losses in arid and semi-arid regions. Information about the impacts of different tillage practices on soil erosion, nutrient loss and crop nutrient uptake on the sloping farmland of semi- arid soil is, however, limited. This study was carried out to investigate the effects of tillage direction on soil, water, nitrogen and phosp...

متن کامل

Significant Impacts of Increasing Aridity on the Arid Soil Microbiome

Global deserts occupy one-third of the Earth's surface and contribute significantly to organic carbon storage, a process at risk in dryland ecosystems that are highly vulnerable to climate-driven ecosystem degradation. The forces controlling desert ecosystem degradation rates are poorly understood, particularly with respect to the relevance of the arid-soil microbiome. Here we document correlat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014