Efficient Region-Based Image Querying

نویسندگان

  • Samy Sadek
  • Ayoub Al-Hamadi
  • Bernd Michaelis
  • Usama Sayed
چکیده

Retrieving images from large and varied repositories using visual contents has been one of major research items, but a challenging task in the image management community. In this paper we present an efficient approach for region-based image classification and retrieval using a fast multi-level neural network model. The advantages of this neural model in image classification and retrieval domain will be highlighted. The proposed approach accomplishes its goal in three main steps. First, with the help of a mean-shift based segmentation algorithm, significant regions of the image are isolated. Secondly, color and texture features of each region are extracted by using color moments and 2D wavelets decomposition technique. Thirdly the multi-level neural classifier is trained in order to classify each region in a given image into one of five predefined categories, i.e., ”Sky”, ”Building”, ”Sand\Rock”, ”Grass” and ”Water”. Simulation results show that the proposed method is promising in terms of classification and retrieval accuracy results. These results compare favorably with the best published results obtained by other state-of-the-art image retrieval techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information

With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...

متن کامل

A Novel Image Retrieval System Using an Effective Region Based Shape Representation Technique

With recent improvements in methods for the acquisition and rendering of shapes, the need for retrieval of shapes from large repositories of shapes has gained prominence. A variety of methods have been proposed that enable the efficient querying of shape repositories for a desired shape or image. Many of these methods use a sample shape as a query and attempt to retrieve shapes from the databas...

متن کامل

Blobworld: A System for Region-Based Image Indexing and Retrieval

Blobworld is a system for image retrieval based on finding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions (“blobs”) with associated color and texture descriptors. Querying is based on the attributes of one or two regions of interest, rather than a description of the entire image. In order to make large-scale retrieval feasible, we ...

متن کامل

Blobworld: A System for Region-Based Image Indexing and Retrieval (long version)?

Blobworld is a system for image retrieval based on nding coherent image regions which roughly correspond to objects. Each image is automatically segmented into regions (\blobs") with associated color and texture descriptors. Querying is based on the attributes of one or two regions of interest, rather than a description of the entire image. In order to make large-scale retrieval feasible, we in...

متن کامل

On-line Content-Based Image Retrieval System using Joint Querying and Relevance Feedback Scheme

In a high-level semantic retrieval process, we utilize the search engine to retrieve a large number of images using a given text-based query. In a low-level image retrieval process, the system provides a similar image search function for the user to update the input query for image similarity characterization. This paper presents an On-line Content-Based Image Retrieval System using joint query...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1006.4588  شماره 

صفحات  -

تاریخ انتشار 2010