Some results on graphs with exactly two main eigenvalues
نویسندگان
چکیده
where ni = nβ 2 i (i = 1, 2); β1 and β2 denote the main angles of μ1 and μ2, respectively. Further, let G be any connected or disconnected graph (not necessarily with two main eigenvalues). Let S be any subset of the vertex set V (G) and let GS be the graph obtained from the graph G by adding a new vertex x which is adjacent exactly to the vertices from S. If σ(GS1) = σ(GS2) then we prove that σ(GS1) = σ(GS2) if and only if σ(GT1) = σ(GT2), where σ(G) is the spectrum of G and Ti = V (G) \ Si for i = 1, 2. However, if G is a connected graph which has exactly two main eigenvalues we prove the following results: (i) if σ(GS1) = σ(GS2) then σ(GS1) = σ(GS2); (ii) if σ(G ) = σ(G) then σ(Gi) = σ(Gj), where G = G \ k denotes the corresponding vertex deleted subgraph of G.
منابع مشابه
Small graphs with exactly two non-negative eigenvalues
Let $G$ be a graph with eigenvalues $lambda_1(G)geqcdotsgeqlambda_n(G)$. In this paper we find all simple graphs $G$ such that $G$ has at most twelve vertices and $G$ has exactly two non-negative eigenvalues. In other words we find all graphs $G$ on $n$ vertices such that $nleq12$ and $lambda_1(G)geq0$, $lambda_2(G)geq0$ and $lambda_3(G)0$, $lambda_2(G)>0$ and $lambda_3(G)
متن کاملA Note on Graphs with Exactly Two Main Eigenvalues
In this note, we consider connected graphs with exactly two main eigenvalues. We will give several constructions for them, and as a consequence we show a family of those graphs with an unbounded number of distinct valencies.
متن کاملEla on the Main Signless Laplacian Eigenvalues of a Graph
A signless Laplacian eigenvalue of a graph G is called a main signless Laplacian eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero. In this paper, some necessary and sufficient conditions for a graph with one main signless Laplacian eigenvalue or two main signless Laplacian eigenvalues are given. And the trees and unicyclic graphs with exactly two main signless L...
متن کاملUnicyclic graphs with exactly two main eigenvalues
An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero, and it is well known that a graph has exactly one main eigenvalue if and only if it is regular. In this work, all connected unicyclic graphs with exactly two main eigenvalues are determined. c © 2006 Elsevier Ltd. All rights reserved.
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملOn graphs with three eigenvalues
We consider undirected non-regular connected graphs without loops and multiple edges (other than complete bipartite graphs) which have exactly three distinct eigenvalues (such graphs are called non-standard graphs). The interest in these graphs is motivated by the questions posed by W. Haemers during the 15th British Combinatorial Conference (Stirling, July 1995); the main question concerned th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Math. Lett.
دوره 25 شماره
صفحات -
تاریخ انتشار 2012