Survival of Subthreshold Oscillations: the Interplay of Noise, Bifurcation Structure, and Return Mechanism

نویسندگان

  • Rachel Kuske
  • Peter Borowski
  • RACHEL KUSKE
  • PETER BOROWSKI
چکیده

Mixed mode oscillations (MMO’s) composed of subthreshold oscillations (STO’s) and spikes appear via a variety of mechanisms in models of neural dynamics. Two key elements that can influence the prominence of the STO’s are multiple time scales and time varying parameters near critical points. These features can lead to dynamics associated with bifurcation delay, and we consider three systems with this behavior. While it is well known that bifurcation delay related to a slow time scale is sensitive to noise, we compare other aspects of the noise-sensitivity in the context of MMO’s, where not only bifurcation delay, but also coherence resonance and dynamics in the interspike interval play a role. Noise can play a role in amplifying the STO’s but it can also drive the system into repetitive spiking without STO’s. In particular we compare integrate and fire models with models that capture both spike and STO dynamics. The interplay of the underlying bifurcation structure and the modeling of the return mechanism following the spike are major factors in the robustness and noise sensitivity of the STO’s in the context of multiple time

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing mixed mode oscillations shaped by noise and bifurcation structure.

Many neuronal systems and models display a certain class of mixed mode oscillations (MMOs) consisting of periods of small amplitude oscillations interspersed with spikes. Various models with different underlying mechanisms have been proposed to generate this type of behavior. Stochastic versions of these models can produce similarly looking time series, often with noise-driven mechanisms differ...

متن کامل

Autonomous stochastic resonance in bursting neurons

Noise-induced firing is studied in two major classes of bursting neuron models in the absence of periodic input. In the biologically relevant subthreshold regime where no deterministic firing occurs, additive noise induces spiking limit cycles. This noise makes the output firing patterns sensitive to the characteristics of autonomous subthreshold oscillations, which can change in response to va...

متن کامل

Subthreshold oscillations in a map-based neuron model

Self-sustained subthreshold oscillations in a discrete-time model of neuronal behavior are considered. We discuss bifurcation scenarios explaining the birth of these oscillations and their transformation into tonic spikes. Specific features of these transitions caused by the discrete-time dynamics of the model and the influence of external noise are discussed.  2004 Elsevier B.V. All rights re...

متن کامل

Interplay between Subthreshold Oscillations and Depressing Synapses in Single Neurons

In this paper we analyze the interplay between the subthreshold oscillations of a single neuron conductance-based model and the short-term plasticity of a dynamic synapse with a depressing mechanism. In previous research, the computational properties of subthreshold oscillations and dynamic synapses have been studied separately. Our results show that dynamic synapses can influence different asp...

متن کامل

Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors

Mammalian cold thermoreceptors encode steady-state temperatures into characteristic temporal patterns of action potentials. We propose a mechanism for the encoding process. It is based on Plant's ionic model of slow wave bursting, to which stochastic forcing is added. The model reproduces firing patterns from cat lingual cold receptors as the parameters most likely to underlie the thermosensiti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009