Acute lung injury is reduced in fat-1 mice endogenously synthesizing n-3 fatty acids.
نویسندگان
چکیده
RATIONALE Acute lung injury (ALI) remains an important cause of mortality in intensive care units. Inflammation is controlled by cytokines and eicosanoids derived from the n-6 fatty acid (FA) arachidonic acid (AA). The n-3 FA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and mediators derived from EPA and DHA possess reduced inflammatory potency. OBJECTIVES To determine whether the ability of fat-1 mice to endogenously convert n-6 to n-3 FA, and thus generate an increased ratio of n-3 to n-6 FA, impacts experimental ALI. METHODS We investigated ALI induced by intratracheal instillation of endotoxin in fat-1 and wild-type (WT) mice, assessing leukocyte numbers, protein concentration, and prostaglandin and cytokine levels in bronchoalveolar lavage fluid, as well as free FA in plasma, and lung ventilator compliance. Body temperature and motor activity of mice--markers of sickness behavior--were also recorded. MEASUREMENTS AND MAIN RESULTS In ALI, fat-1 mice exhibited significantly reduced leukocyte invasion, protein leakage, and macrophage inflammatory protein-2 and thromboxane B(2) levels in lavage fluid compared with WT mice. Free AA levels were increased in the plasma of WT mice in response to endotoxin, whereas EPA and DHA were increased in the fat-1 group. Ventilator compliance was significantly improved in fat-1 mice. Body temperature and motor activity were decreased in ALI. fat-1 Mice recovered body temperature and motor activity faster. CONCLUSIONS fat-1 Mice exhibited reduced features of ALI and sickness behavior. Increasing the availability of n-3 FA may thus be beneficial in critically ill patients with ALI.
منابع مشابه
Endogenously Generated Omega‐3 Fatty Acids Attenuate Vascular Inflammation and Neointimal Hyperplasia by Interaction With Free Fatty Acid Receptor 4 in Mice
BACKGROUND Omega-3 polyunsaturated fatty acids (ω3 PUFAs) suppress inflammation through activation of free fatty acid receptor 4 (FFAR4), but this pathway has not been explored in the context of cardiovascular disease. We aimed to elucidate the involvement of FFAR4 activation by ω3 PUFAs in the process of vascular inflammation and neointimal hyperplasia in mice. METHODS AND RESULTS We used mi...
متن کاملEndogenous n-3 Fatty Acids Alleviate Carbon-Tetrachloride-Induced Acute Liver Injury in Fat-1 Transgenic Mice
n-3 polyunsaturated fatty acids (PUFAs) are beneficial for numerous models of liver diseases. The probable protective effects of n-3 PUFA against carbon-tetrachloride- (CCl4-) induced acute liver injury were evaluated in a fat-1 transgenic mouse that synthesizes endogenous n-3 from n-6 PUFA. Fat-1 mice and their WT littermates were fed a modified AIN93 diet containing 10% corn oil and were inje...
متن کاملQuantitative Profiling of Hydroxy Lipid Metabolites in Mouse Organs Reveals Distinct Lipidomic Profiles and Modifications Due to Elevated n-3 Fatty Acid Levels
Polyunsaturated fatty acids (PUFA) are precursors of bioactive metabolites and mediators. In this study, the profile of hydroxyeicosatetraenoic (HETE), hydroxyeicosapentaenoic (HEPE) and hydroxydocosahexaenoic (HDHA) acids derived from arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in colon, liver, lung, spleen, muscle, heart and kidney tissue of healthy wildt...
متن کاملOmega-3 Polyunsaturated Fatty Acids Protect Against Ischemia-Reperfusion Renal Injury Through AMPK- Mediated Autophagy
Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). ω3-Polyunsaturated fatty acids (ω3-PUFAs) show protective effects against various renal injuries. It was recently reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI) and evaluated associated mechanisms. C57Bl/6 background fat-1 mice and wi...
متن کاملHigh Pancreatic n-3 Fatty Acids Prevent STZ-Induced Diabetes in Fat-1 Mice: Inflammatory Pathway Inhibition
OBJECTIVE Because of confounding factors, the effects of dietary n-3 polyunsaturated fatty acids (PUFA) on type 1 diabetes remain to be clarified. We therefore evaluated whether fat-1 transgenic mice, a well-controlled experimental model endogenously synthesizing n-3 PUFA, were protected against streptozotocin (STZ)-induced diabetes. We then aimed to elucidate the in vivo response at the pancre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of respiratory and critical care medicine
دوره 179 6 شماره
صفحات -
تاریخ انتشار 2009