Development of Transgenic Cotton Lines Expressing Allium sativum Agglutinin (ASAL) for Enhanced Resistance against Major Sap-Sucking Pests
نویسندگان
چکیده
Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.
منابع مشابه
Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests.
We have developed transgene pyramided rice lines, endowed with enhanced resistance to major sap-sucking insects, through sexual crosses made between two stable transgenic rice lines containing Allium sativum (asal) and Galanthus nivalis (gna) lectin genes. Presence and expression of asal and gna genes in pyramided lines were confirmed by PCR and western blot analyses. Segregation analysis of F₂...
متن کاملAllergenicity Assessment of Allium sativum Leaf Agglutinin, a Potential Candidate Protein for Developing Sap Sucking Insect Resistant Food Crops
BACKGROUND Mannose-binding Allium sativum leaf agglutinin (ASAL) is highly antinutritional and toxic to various phloem-feeding hemipteran insects. ASAL has been expressed in a number of agriculturally important crops to develop resistance against those insects. Awareness of the safety aspect of ASAL is absolutely essential for developing ASAL transgenic plants. METHODOLOGY/PRINCIPAL FINDINGS ...
متن کاملAgrobacterium-mediated Transformation of Cotton (Gossypium hirsutum) Using a Synthetic cry1Ab Gene for Enhanced Resistance Against Heliothis armigera
Cotton (Gossypium hirsutum L.) is an important fiber crop in Iran, cultivated on 150000-200000 ha of land. In Iran the estimated loss due to the insect pest is more than 30%. Traditionally, pests are controlled by 10-12 times spraying per growing season of environmentally harmful chemical insecticides (e.g. endosulfan and/or methosystox). In order to produce transgenic cotton resistance to in...
متن کاملToxins for Transgenic Resistance to Hemipteran Pests
The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic cr...
متن کاملDevelopment of selectable marker free, insect resistant, transgenic mustard (Brassica juncea) plants using Cre/lox mediated recombination
BACKGROUND Antibiotic/ herbicide resistant marker genes have been proven to be very useful in plant transformation for the initial selection of desired transgenic events. However, presence of these genes in the genetically modified crops may render the crop less acceptable to the consumers. Among several different approaches, the effectiveness of Cre/lox mediated recombination strategy for sele...
متن کامل