Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay
نویسندگان
چکیده
Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their inter-assay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.
منابع مشابه
An Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro
CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...
متن کاملAn Alkaline Phosphatase Reporter Gene Assay for Induction of CYP3A4 In Vitro
CYP3A4 probably has the broadest catalytic activity of any cytochrome P450. It is a crucial task to test new drug candidates in a reliable system for their ability to induce expression of this enzyme. Firstly, a total of 300 bp core distal enhancer of CYP3A4 XREM region (-7972/-7673) were amplified from human genomic DNA. The PCR product was then ligated into a human secretory alkaline phosphat...
متن کاملThe involvement of flavin-containing monooxygenase but not CYP3A4 in metabolism of itopride hydrochloride, a gastroprokinetic agent: comparison with cisapride and mosapride citrate.
The goals of the present study were to identify the enzyme responsible for metabolism of itopride hydrochloride (itopride) and to evaluate the likelihood of drug interaction involving itopride. In human liver microsomes, the involvement of flavin-containing monooxygenase in N-oxygenation, the major metabolic pathway of itopride, was indicated by the following results: inhibition by methimazole ...
متن کاملP-192: Association of Cytochrome P450 2D6 (CYP2D6) Gene Polymorphism with Clomiphene Citrate Treatment in Iranian Infertile Women with Polycystic Ovary Syndrome
Background: Clomiphene Citrate (CC) is the most frequently administered drug for the treatment of female infertility [e.g. polycystic ovary syndrome (PCOS)]; which aims at restoring ovulation. Clomiphene is metabolized by CYP2D6, an important enzyme responsible for the metabolism of approximately 25% of clinically used drugs. CYP2D6 is very polymorphic and thought to result in inter- individual...
متن کاملCloning and gene expression of cytochrome P450 gene from Alcanivorax borkumensis Bacterium
Alcanivorax borkumensis is a marine bacterium that has ability to grow on limited substrates that mainly is alkanes. The ability to use wide range of hydrocarbons is advantage of this bacterium to other marine community bacteria. A. borkumensis have two genetic systems for alkane biodegradation. The First system is alkane hydroxylase (alk-B1and alk-B2) and the second system is...
متن کامل