Normalized Population Diversity in Particle Swarm Optimization
نویسندگان
چکیده
Particle swarm optimization (PSO) algorithm can be viewed as a series of iterative matrix computation and its population diversity can be considered as an observation of the distribution of matrix elements. In this paper, PSO algorithm is first represented in the matrix format, then the PSO normalized population diversities are defined and discussed based on matrix analysis. Based on the analysis of the relationship between pairs of vectors in PSO solution matrix, different population diversities are defined for separable and non-separable problems, respectively. Experiments on benchmark functions are conducted and simulation results illustrate the effectiveness and usefulness of the proposed normalized population diversities.
منابع مشابه
Chaotic-based Particle Swarm Optimization with Inertia Weight for Optimization Tasks
Among variety of meta-heuristic population-based search algorithms, particle swarm optimization (PSO) with adaptive inertia weight (AIW) has been considered as a versatile optimization tool, which incorporates the experience of the whole swarm into the movement of particles. Although the exploitation ability of this algorithm is great, it cannot comprehensively explore the search space and may ...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملFast Moving Object Tracking Algorithm based on Hybrid Quantum PSO
Standard particle swarm optimization(PSO) has capacity of local search exploitation and global search exploratio. The population diversity gets easily lost during the latter period of evolution, which means most particles are convergenced into near positions which is the local optimia. In this paper, a Euclid distance based hybird quantum particle swarm optimization (HQPSO) is brought up. Based...
متن کاملPareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope
Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...
متن کاملHybrid Recursive Particle Swarm Optimization Learning Algorithm in the Design of Radial Basis Function Networks
In this paper, an innovative hybrid recursive particle swarm optimization (HRPSO) learning algorithm with normalized fuzzy cmean (NFCM) clustering, particle swarm optimization (PSO) and recursive least-squares (RLS) is proposed to generate radial basis function networks (RBFNs) modeling system with small numbers of descriptive radial basis functions (RBFs) for fast approximating two complex and...
متن کامل