Closed-form solutions, extremality and nonsmoothness criteria in a large deformation elasticity problem

نویسندگان

  • D. Y. Gao
  • R. W. Ogden
چکیده

The pure azimuthal shear problem for a circular cylindrical tube of nonlinearly elastic material, both isotropic and anisotropic, is examined on the basis of a complementary energy principle. For particular choices of strain-energy function, one convex and one nonconvex, closed-form solutions are obtained for this mixed boundary-value problem, for which the governing differential equation can be converted into an algebraic equation. The results for the non-convex strain energy function provide an illustration of a situation in which smooth analytic solutions of a nonlinear boundary-value problem are not global minimizers of the energy in the variational statement of the problem. Both the global minimizer and the local extrema are identified and the results are illustrated for particular values of the material parameters. Mathematics Subject Classification (2000). 74B20, 74P99.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Static Flexure of Soft Core Sandwich Beams using Trigonometric Shear Deformation Theory

This study deals with the applications of a trigonometric shear deformation theory considering the effect of the transverse shear deformation on the static flexural analysis of the soft core sandwich beams. The theory gives realistic variation of the transverse shear stress through the thickness, and satisfies the transverse shear stress free conditions at the top and bottom surfaces of the bea...

متن کامل

Analytical Solutions to General Anti-Plane Shear Problems In Finite Elasticity∗

This paper presents a pure complementary energy variational method for solving a general anti-plane shear problem in finite elasticity. Based on the canonical dualitytriality theory developed by the author, the nonlinear/nonconex partial differential equations for the large deformation problem is converted into an algebraic equation in dual space, which can, in principle, be solved to obtain a ...

متن کامل

Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory

A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure   analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero ...

متن کامل

A New Three-Dimensional Refined Higher-Order Theory for Free Vibration Analysis of Composite Circular Cylindrical Shells

A new closed form formulation of three-dimensional (3-D) refined higher-order shell theory (RHOST) to analyze the free vibration of composite circular cylindrical shells has been presented in this article. The shell is considered to be laminated with orthotropic layers and simply supported boundary conditions. The proposed theory is used to investigate the effects of the in-plane and rotary ine...

متن کامل

Vibration Analysis of FG Nanoplate Based on Third-Order Shear Deformation Theory (TSDT) and Nonlocal Elasticity

In present study, the third-order shear deformation theory has been developed to investigate vibration analysis of FG Nano-plates based on Eringen nonlocal elasticity theory. The materials distribution regarding to the thickness of Nano-plate has been considered based on two different models of power function and exponential function. All equations governing on the vibration of FG Nano-plate ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008