A Methodology for Building Regression Models using Extreme Learning Machine: OP-ELM
نویسندگان
چکیده
This paper proposes a methodology named OP-ELM, based on a recent development –the Extreme Learning Machine– decreasing drastically the training speed of networks. Variable selection is beforehand performed on the original dataset for proper results by OP-ELM: the network is first created using Extreme Learning Process, selection of the most relevant nodes is performed using Least Angle Regression (LARS) ranking of the nodes and a Leave-One-Out estimation of the performances. Results are globally equivalent to LSSVM ones with reduced computational time.
منابع مشابه
Evolving fuzzy optimally pruned extreme learning machine for regression problems
This paper proposes an approach to the identification of evolving fuzzy Takagi–Sugeno systems based on the optimally pruned extreme learning machine (OP-ELM) methodology. First, we describe ELM, a simple yet accurate learning algorithm for training single-hidden layer feed-forward artificial neural networks with random hidden neurons. We then describe the OP-ELM methodology for building ELM mod...
متن کاملTROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization
In this paper an improvement of the optimally pruned extreme learning machine (OP-ELM) in the form of a L2 regularization penalty applied within the OP-ELM is proposed. The OP-ELM originally proposes a wrapper methodology around the extreme learning machine (ELM) meant to reduce the sensitivity of the ELM to irrelevant variables and obtain more parsimonious models thanks to neuron pruning. The ...
متن کاملOP-ELM: Theory, Experiments and a Toolbox
This paper presents the Optimally-Pruned Extreme Learning Machine (OP-ELM) toolbox. This novel, fast and accurate methodology is applied to several regression and classification problems. The results are compared with widely known Multilayer Perceptron (MLP) and Least-Squares Support Vector Machine (LS-SVM) methods. As the experiments (regression and classification) demonstrate, the OP-ELM meth...
متن کاملModeling Discharge Coefficient of Side Weir on Converging Channel Using Extreme Learning Machine
In this study, the discharge coefficient of side weirs located on converging channels was simulated for the first time using a new method of Extreme Learning Machine (ELM). To examine the accuracy of the numerical model, the Monte Carlo simulations were used and the experimental values validation was conducted by the k-fold cross validation method. Then, the input parameters were detected for s...
متن کاملA variable selection approach based on the Delta Test for Extreme Learning Machine models
Extreme Learning Machine, ELM, is a newly available learning algorithm for single layer feedforward neural networks (SLFNs), and it has proved to show the best compromise between learning speed and accuracy of the estimations. In this paper, a methodology based on Optimal-Pruned ELM (OP-ELM) for function approximation enhanced with variable selection using the Delta Test is introduced. The leas...
متن کامل