From Schrödinger spectra to orthogonal polynomials, via a functional equation
نویسندگان
چکیده
Abstract The main difference between certain spectral problems for linear Schrödinger operators, e.g. the almost Mathieu equation, and three-term recurrence relations for orthogonal polynomials is that in the former the index ranges across Z and in the latter only across Z+. We present a technique that, by a mixture of Dirichlet and Taylor expansions, translates the almost Mathieu equation and its generalizations to three term recurrence relations. This opens up the possibility of exploiting the full power of the theory of orthogonal polynomials in the analysis of Schrödinger spectra. Aforementioned three-term recurrence relations share the property that their coefficients are almost periodic. We generalize a method of proof, due originally to Jeff Geronimo and Walter van Assche, to investigate essential support of the Borel measure of associated orthogonal polynomials, thereby deriving information on the underlying absolutely continuous spectra of Schrödinger operators.
منابع مشابه
Solving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملThe Essential Spectrum of Schrödinger, Jacobi, and Cmv Operators Yoram Last and Barry Simon
We provide a very general result that identifies the essential spectrum of broad classes of operators as exactly equal to the closure of the union of the spectra of suitable limits at infinity. Included is a new result on the essential spectra when potentials are asymptotic to isospectral tori. We also recover with a unified framework the HVZ theorem and Krein’s results on orthogonal polynomial...
متن کاملThe Essential Spectrum of Schrödinger, Jacobi, and Cmv Operators
We provide a very general result that identifies the essential spectrum of broad classes of operators as exactly equal to the closure of the union of the spectra of suitable limits at infinity. Included is a new result on the essential spectra when potentials are asymptotic to isospectral tori. We also recover with a unified framework the HVZ theorem and Krein’s results on orthogonal polynomial...
متن کاملThe Fourth-order Difference Equation Satisfied by the Associated Orthogonal Polynomials of the Delta-Laguerre-Hahn Class
Starting from the D!-Riccati Diierence equation satissed by the Stieltjes function of a linear functional, we work out an algorithm which enables us to write the general fourth-order diierence equation satissed by the associated of any integer order of orthogonal polynomials of the-Laguerre-Hahn class. Moreover, in classical situations (Meixner, Charlier, Krawtchouk and Hahn), we give these dii...
متن کامل