Order restricted inference of a multiple step-stress model

نویسندگان

  • Debashis Samanta
  • Debasis Kundu
چکیده

In this manuscript both the classical and Bayesian analyses of a multiple step-stress model have been considered. The lifetime distributions of the experimental units at each stress level follow two-parameter generalized exponential distribution and they are related through the cumulative exposure model assumptions. Recently Abdel-Hamid and Al-Hussaini (Computational Statistics and Data Analysis, 53:1328–1338, 2009) provided the classical inference of the model parameters of a simple step-stress model, under the same set of assumptions. In a typical step-stress experiment, it is expected that the lifetime of the experimental units will be shorter at the higher stress level. The main aim of this paper is to develop the order restricted inference of the model parameters of a multiple step-stress model based on both the classical and Bayesian approaches. An extensive simulation study has been performed and one data set has been analyzed for illustrative purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMUM GENERALIZED COMPOUND LINEAR PLAN FOR MULTIPLE-STEP STEP-STRESS ACCELERATED LIFE TESTS

In this paper, we consider an  i.e., multiple step-stress accelerated life testing (ALT) experiment with unequal duration of time . It is assumed that the time to failure of a product follows Rayleigh distribution with a log-linear relationship between stress and lifetime and also we assume a generalized Khamis-Higgins model for the effect of changing stress levels. Taking into account that the...

متن کامل

Bayes Estimation for a Simple Step-stress Model with Type-I Censored Data from the Geometric Distribution

This paper focuses on a Bayes inference model for a simple step-stress life test using Type-I censored sample in a discrete set-up. Assuming the failure times at each stress level are geometrically distributed, the Bayes estimation problem of the parameters of interest is investigated in the both of point and interval approaches. To derive the Bayesian point estimators, some various balanced lo...

متن کامل

Order restricted Bayesian inference for exponential simple step-stress model

Step-stress model has received a considerable amount of attention in recent years. In the usual step-stress experiment, stress level is allowed to increase at each step to get rapid failure of the experimental units. The expected lifetime of the experimental unit is shortened as the stress level increases. Although, extensive amount of work has been done on step-stress models, not enough attent...

متن کامل

A Multiple Adaptive Neuro-Fuzzy Inference System for Predicting ERP Implementation Success

The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led ...

متن کامل

Presenting a model for Multiple-step-ahead-Forecasting of volatility and Conditional Value at Risk in fossil energy markets

Fossil energy markets have always been known as strategic and important markets. They have a significant impact on the macro economy and financial markets of the world. The nature of these markets are accompanied by sudden shocks and volatility in the prices. Therefore, they must be controlled and forecasted by using appropriate tools. This paper adopts the Generalized Auto Regressive Condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2018